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Photonic Doppler Velocimetry (PDV) is an established technique for measuring the velocities of

fast-moving surfaces in high-energy-density experiments. In the standard approach to PDV analysis, a

short-time Fourier transform (STFT) is used to generate a spectrogram from which the velocity history

of the target is inferred. The user chooses the form, duration and separation of the window function.

Here we present a Bayesian approach to infer the velocity directly from the PDV oscilloscope trace,

without using the spectrogram for analysis. This is clearly a difficult inference problem due to the

highly-periodic nature of the data, but we find that with carefully chosen prior distributions for the

model parameters we can accurately recover the injected velocity from synthetic data. We validate this

method using PDV data collected at the STAR two-stage light gas gun at Sandia National Laboratories,

recovering shock-front velocities in quartz that are consistent with those inferred using the STFT-based

approach, and are interpolated across regions of low signal-to-noise data. Although this method does

not rely on the same user choices as the STFT, we caution that it can be prone to misspecification if

the chosen model is not sufficient to capture the velocity behavior. Analysis using posterior predictive

checks can be used to establish if a better model is required, although more complex models come

with additional computational cost, often taking more than several hours to converge when sampling

the Bayesian posterior. We therefore recommend it be viewed as a complementary method to that of

the STFT-based approach.

I. INTRODUCTION

The velocity of fast-moving surfaces (such as a shock front

or a projectile) is an important diagnostic for experiments in the

field of shock physics1. Two velocimetry methods are widely

used, the Velocity Interferometer System for Any Reflector

(VISAR2,3) and Photonic Doppler Velocimetry (PDV4,5); both

use laser interferometry, but differ in the details of how velocity

is inferred from the interference pattern. In the case of VISAR,

which acts as a delay-leg interferometer, the variation in light

intensity is directly proportional to the velocity of the surface,

while for PDV the interference fringes are proportional to

displacement and so must be differentiated with respect to time

(usually by Fourier analysis). This requires a PDV system to

have sufficient recording bandwidth to measure high velocities,

although the advent of digital acquisition systems in excess of

10 GHz has somewhat negated this issue. VISAR has the

advantage of velocimetry resilience in the presence of rough

surfaces (hence, ‘any reflector’) while PDV can exhibit signal

drop-out due to rough surfaces or multi-mode degraded fiber

delivery. Conversely, PDV can be used to measure multiple

velocities simultaneously, which is not possible with VISAR.

Ultimately, since PDV is operationally simpler it has been

widely adopted by the research community as an adjunct or

replacement velocimetry method to VISAR6.

A full description of the standard approach to PDV analysis

was given in the 2020 review by Dolan7, which we briefly sum-

marize here. Near-infrared laser light (typically _ ≈ 1550 nm)

is reflected off a moving target and mixed with reference light

(either from the same source or from a second laser) to gener-

ate a time-varying intensity signal at the receiver, the read-out

of which is captured by a digital oscilloscope. A short-time

Fourier transform (STFT) is then applied to the voltage ver-

sus time data to create a time-frequency representation of the

signal (a spectrogram), from which dominant spectral com-

ponents can be more easily identified and a velocity history

extracted. The inferred velocity history is dependent on the

choices made by the user that include the form, duration and

separation of the STFT window function, and the method to

identify and characterize the time-varying spectrogram signal

(typically using either peak finding, curve fitting or centroid

analysis). The implicit time-scale is set by the STFT win-

dow function, which necessarily leads to temporal broaden-

ing of the signal that can obscure behavior at smaller time

intervals. This is particularly evident at points of rapid accel-

eration/deceleration or discontinuities. The precision of the

velocity measurement is ultimately limited by the sampling

rate, signal noise fraction, and analysis duration8, although

other sources of error, such as laser speckle interference9, are

expected to contribute10.

Bayesian inference is a probabilistic approach to data anal-

ysis that has gained traction in many research disciplines be-

cause it provides a robust and easily interpretable method for

determining, with uncertainty, model parameters from exper-

imental data. Crucially, the use of Bayes’ theorem allows

the practitioner to naturally incorporate information from both

prior knowledge and experimental evidence, optimizing the

precision of the inferred parameter. In the domain of laser

Doppler velocimetry (LDV), a closely-related diagnostic tech-

nique to PDV, Bayesian methods have been used with success

to infer the dynamic behavior of vibrating solid objects11,12

and fluid flows13–15. These methods often assume a simple   
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A Bayesian approach to time-domain PDV analysis 2

model for the velocity behavior of the object under study, such

as, in the case of acoustic oscillations, a time-varying sinusoid

of constant phase and amplitude. This limits the number of

model parameters and so greatly reduces the computational

cost of numerically sampling the joint probability distribu-

tion. By contrast, PDV analysis poses unique challenges to the

Bayesian approach because of the extreme physical conditions

under study, including continuously time-varying supersonic

velocity, the behavior of which is often unknown beforehand.

Furthermore, PDV data are often highly-periodic and contain

several thousand fringes in a single measurement, rendering a

highly multi-modal probability distribution that is challenging

to accurately sample using standard numerical approaches.

In this paper, we use recent advancements in numerical sam-

pling techniques for Bayesian inference to explore the potential

of a time-domain approach to PDV analysis as a complemen-

tary method to the standard STFT-based approach. Specifi-

cally, we directly model the time-dependent oscilloscope sig-

nal and thereby avoid using the spectrogram, and associated

user choices, as an analysis tool. We use a general parame-

terized time-series model for the velocity history, from which

we generate synthetic PDV oscilloscope traces that can be

compared with the observed data. Used within a Bayesian

framework, we can automatically recover velocity histories

from the data with uncertainties that are determined naturally

from an input noise model. Such an approach is susceptible

to model misspecification and requires that we either capture

possible errors in our model or that these are dealt with in

data pre-processing. To avoid greatly increasing the number

of required parameters in our model, we filter and normalize

the data to remove any DC or low-frequency behavior (which

provide no information about the velocity) and, subsequently,

we construct a noise covariance model that captures the corre-

lated behavior due to the filtering. We verify this approach by

recovering an input synthetic velocity history and then validate

it against standard PDV analysis of a shock front propagating

through a quartz sample from data obtained with the STAR

two-stage light gas gun at Sandia National Laboratories16.

We structure this paper as follows: in Section II we describe

in detail our approach to Bayesian inference for PDV analysis,

including verification against synthetic data, in Section III we

present results from analysis of PDV data from the STAR

two-stage light gas gun, and in Section IV we summarize our

conclusions and recommendations.

II. BAYESIAN PDV ANALYSIS

A. Bayesian inference

We use Bayesian inference to recover the velocity histories

of moving targets from PDV data. This approach is advan-

tageous over other techniques because it allows us to obtain

probability distributions for the model parameters and deriva-

tive variables, and to include information from prior knowl-

edge and experiments. Furthermore, by forward-modeling the

system we are able to reliably capture the effect of systematic

errors and uncertainties in the experiment. The disadvantages

of this approach are that the result is highly dependent on the

model and so any misspecification of the data, either in the

signal or noise, will be propagated through as an unknown

error. Knowledge of the limitations of the model are there-

fore important for interpreting any result obtained using this

approach.

In most modeling problems, we are interested in inferring

the posterior probability of the parameters θ that describe our

model " , given our data �. Using Bayes’ theorem, we can

express this in terms of the product of the likelihood function,

%(� |θ, "), and the prior probability distribution, %(θ |"),

%(θ |�,") =
%(� |θ, ")%(θ |")

%(� |")
, (1)

where the denominator, %(� |"), known as the marginal like-

lihood (or model evidence), is independent of θ and so can be

absorbed into the normalization. In general, the posterior is

not analytically tractable and so numerical methods, such as

Monte Carlo sampling, are used to approximate the probabil-

ity distribution as a function of the model parameters. From

Eq. 1, we can see that choosing the correct likelihood function

and priors are critical in accurately representing our belief in

the model parameters. In the following sections we present

our choices of these for PDV analysis.

B. Likelihood function

The likelihood function, L(θ) = %(� |θ, "), encodes infor-

mation about the model parameters gained from the experi-

mental data, updating our belief from the prior to the posterior

probabilities. In the case of PDV analysis, the dataset is a

voltage-time trace acquired with a digital oscilloscope. The

ground-truth PDV signal is contaminated by random Gaussian

noise due to components in the signal chain, which is domi-

nated by photon noise from the reference laser (see Sections IV

C and VII F of Dolan 20207). We therefore use a multivariate

Gaussian likelihood function, given by

L(θ) =
1

√

(2c)# |C|
exp

[

−
1

2
(d−µ(θ))T

C
−1 (d−µ(θ))

]

,

(2)

where C is the matrix that encodes the covariance due to the

noise, d is the vector (of length #) of sampled voltage data

as a function of time, and µ are the expected values of these

data given by the model. The components of C are d8, 9f8f9 ,

where f8 and f9 are the standard deviations due to noise at

the 8’th and 9’th positions in the data, and d8, 9 are Pearson

correlation coefficients. We describe how these are estimated

and modeled in Section II C 3.

C. Models

1. Velocity history

We model the velocity history of a single component using

a parameterized one-dimensional series based on piecewise

linear components. Parameters consist of an initial velocity,

{0, and = accelerations ¤{8 over each subsequent time interval

C8− C8−1. By parameterizing the series in terms of acceleration,

we do not need to adjust the prior distributions with respect to

temporal resolution. The velocity at time C ∈ (C 9−1, C 9 ) is then   
 T

hi
s 

is
 th

e 
au

th
or

’s
 p

ee
r 

re
vi

ew
ed

, a
cc

ep
te

d 
m

an
us

cr
ip

t. 
H

ow
ev

er
, t

he
 o

nl
in

e 
ve

rs
io

n 
of

 r
ec

or
d 

w
ill

 b
e 

di
ffe

re
nt

 fr
om

 th
is

 v
er

si
on

 o
nc

e 
it 

ha
s 

be
en

 c
op

ye
di

te
d 

an
d 

ty
pe

se
t. 

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
10

.1
06

3/
5.

02
67

40
9
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−2

0

2

4

V
[V
]

FIG. 1. A synthetic PDV oscilloscope trace (voltage, + versus time, C) generated using the models discussed in Section II C and used for

verification of our Bayesian method (see Section II E). The vertical red lines correspond to the start and end times, at 0.12 and 0.16 `s

respectively, of the target signal. Although the ground-truth PDV signal is sinusoidal, the presence of noise renders visual identification of

the fringes challenging (see inset); hence the need for techniques such as STFT analysis or Bayesian forward-modeling to accurately infer the

velocity history from the data.

given by

{(C) = { 9−1 + ({ 9 − { 9−1)
C − C 9−1

C 9 − C 9−1

, (3)

where

{ 9 = {0 +

9
∑

8=1

¤{8 (C8 − C8−1). (4)

The number of acceleration parameters depends on the de-

sired time resolution but are constrained by the computational

complexity of sampling the parameter space for inference.

The start and end times of the series could be included as in-

ferred parameters, but we found that model misspecification of

real experimental data leads to concentration of fitting in high

signal-to-noise regions (see Section III). Therefore, these are

fixed to reasonable values that enclose the PDV signal based

on visual inspection of the spectrogram.

This model has the advantage of simplicity and intepretabil-

ity, but forces linear behavior over time scales smaller than ΔC8
and is not differentiable at component intersections. This be-

havior could be avoided by choosing alternative models that

are constructed from linear combinations of a finite set of

orthogonal basis functions, which include, for example, the

Hermite Polynomials or Karhunen-Loéve (KL) expansion of

a Gaussian Process (GP) covariance function17,18. Likewise,

systems that are known to include discontinuities in the ve-

locity history could be explicitly modeled by incorporating a

finite number of parameterized step functions that multiply the

time series. Such models are beyond the scope of this work

but should be considered in future implementations.

2. PDV signal

We generate a synthetic PDV signal by modeling the in-

terference fringe pattern between light from the target and

reference lasers. The time-dependent beat frequency of this

interference signal is given by

5 (C) ≡
dq(C)

dC
= |aT − aR +2aT V

∗ (C) |, (5)

where q is the phase angle, aT and aR are, respectively, the

target and reference laser frequencies, and V∗ (C) is the ratio of

the apparent velocity, {∗ (C), to the speed of light in vacuum.

Uncertainties in the PDV laser frequencies could be included

as a component of the model, but are expected to be at the

level of one part in a million7 and so we do not include this in

our analysis. For a full discussion of the definition of apparent

velocity please see section VI B of Dolan (2020)7; here, for the

simple reflective target surfaces considered in this work, the

apparent velocity is related to the lab-frame velocity, {(C), by

{∗ (C) = =0 {(C), (6)

where =0 is the refractive index ahead of the target.

For near infrared lasers (_ ≈ 1550 nm) that are typically used

in PDV, changes in beat frequency are related to changes in the

apparent velocity by
[

Δ 5

1.3GHz

]

≈ � ({∗)

[

Δ{∗

1kms−1

]

, (7)

where � ({∗) can be ±1, given by

� ({∗) = 2� (aT − aR +2aT V
∗) −1. (8)

� is the Heaviside step function, which has the property of

being zero for arguments less than zero, and unity other-

wise. Therefore, for fast-acquisition oscilloscope bandwidths

≳ 10 GHz, changes in apparent velocities ≳ 8 km s−1 can be

measured. If aT > aR, then � ({∗) = 1 for all positive (that is,

approaching) apparent velocities and the diagnostic is known

as up-shifted PDV. Alternatively, for down-shifted PDV, the

target and reference laser wavelengths are chosen such that

aT < aR and so� ({∗) switches sign within the range of positive

apparent velocities. This doubles the range of measurable ve-

locities within the available oscilloscope bandwidth, but with

ambiguity about the frequency-to-velocity mapping (see figure

4 of Dolan 20207).

Once we have modeled the beat frequency as a function of

time, the resulting PDV signal is given by

+ (C) = +̂ (C) sin

(

q0 +

∫ C

C0

5 (C′) dC′
)

, (9)
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A Bayesian approach to time-domain PDV analysis 4

TABLE I. Model parameter values used to generate a synthetic PDV

dataset for verification of the method.

Model Parameter Units Value

Velocity history {0 km s−1 25

.

.

. ¤{1 km s−1 per `s 0

¤{2
.
.
. 0

¤{3 -20

¤{4 -50

¤{5 -100

¤{6 -100

¤{7 -100

¤{8 -50

¤{9 -20

¤{10 0

¤{11 0

¤{12 20

¤{13 50

¤{14 100

¤{15 50

¤{16 20

¤{17 0

¤{18 -10

¤{19 -20

¤{20 -50

Phase offset q0 deg 0

where +̂ is the amplitude (dependent on the unknown time-

varying intensities of the target and reference lasers), and q0 is

the unknown phase at C = C0. We cumulatively evaluate the in-

tegral numerically using the composite trapezoid method. We

could model the amplitude as a time series, using the models

described above, but this would not provide us with further

information about the velocity history of the target. Alterna-

tively, we can attempt to capture and factor out the amplitude

during a pre-processing step, thereby being left with only the

frequency-dependent component of the signal. However, this

assumes that only a single coherent component exists in the

PDV signal. We discuss this further in Section III. In the

case of the unknown phase offset, we simply include q0 in the

model as a nuisance parameter.

3. PDV noise

We model the noise in the PDV data as a multivari-

ate Gaussian distribution with zero mean and covariance

�8, 9 = d8, 9 f8f9 , where f8 and f9 are the standard deviations

at the 8’th and 9’th positions in the data, and d8, 9 is the Pearson

correlation coefficient. We could include these parameters in

the inferred model, but this would greatly increase the com-

plexity of the inference problem. Instead we estimate the noise

a priori using the following summary statistics based on prior

assumptions:

Standard deviations: Under the assumption of ho-

moskedastic (that is, constant variance) noise, we can estimate

a single value for the standard deviation across the oscilloscope

trace. We identify a signal-free region in frequency space from

a spectrogram of the data, then apply an appropriate noise-only

bandpass filter to remove the PDV signal. In the case of the

experimental validation data used in Section III, we used beat

frequencies between 2 and 5 GHz as representative of signal-

free data (see the spectrograms in Fig. 9). We then estimate

the standard deviation due to noise using the median absolute

deviation (MAD) across the filtered trace. In the presence of

any residual signal or artifacts, MAD is a more reliable estima-

tor of the variability due to noise than the standard deviation

estimator. Finally, because the noise-only filter acts to reduce

the true noise, we apply a correction factor to the standard de-

viation that is estimated using a Monte Carlo sample of 1000

filtered synthetic Gaussian noise traces.

Correlation coefficients: With regard to the correlation

coefficients, we assume that all correlated noise is the result

of bandpass filtering due to the oscilloscope bandwidth and

subsequent data processing. We identify the frequency band of

the oscilloscope trace from the spectrogram and then estimate

the correlation coefficients from a Monte Carlo sample of 1000

bandpass filtered synthetic Gaussian-noise traces.

We demonstrate the validity of this model in Appendix A.

Time series are shown for Gaussian noise generated with and

without a covariance matrix determined using the method

above for a 1 GHz low-pass filter. The resulting spectrograms

demonstrate that the covariance matrix correctly models the

noise correlation due to the filter.

D. Implementation

We implement all data ingestion, processing and model-

ing in the Python programming language. We use the Bilby

Bayesian inference library19,20 with the DynestyNested Sam-

pling (NS) package21,22 to recover an approximation of the

posterior probability distribution for the model parameters.

NS23 is an alternative approach to the commonly used Markov

Chain Monte Carlo (MCMC) methods that step a chain of sam-

ples through the parameter space; instead, a one-dimensional

integral is calculated over slices of the prior volume that are

constrained by nested iso-likelihood contours. Although orig-

inally developed with the goal of estimating the model evi-

dence, NS also produces the sampled posterior distribution

that can be used for parameter estimation. Given the number

of parameters and inherently multi-modal nature of the PDV

likelihood, we use the random walk and multi-modal bound-

ing options for live point replacement sampling (LRPS), with

1500 live points used for robust posterior sampling (for a re-

view of these methods please refer to Buchner 202324). This

produces a chain of sample points that can be used to estimate

the joint posterior distribution of the model parameters, and

hence recover the PDV velocity history. The run time is de-

pendent on the number of live points and the complexity of the

posterior distribution; PDV analysis in the voltage-time space

is a difficult inference problem and so the NS algorithm can

take many hours to converge with more than 1000 live points.   
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FIG. 2. Spectrograms (beat frequency, 5 versus time, C) generated from (a) the synthetic PDV data shown in Fig. 1, (b) the inferred posterior

distribution of model PDV signals, (c) the inferred maximum a posteriori (MAP; that is, most probable) model and (d) the corresponding

residual (MAP model subtracted from the data). These visually demonstrate that the synthetic signal is recovered by the Bayesian forward-

modeling method. In the case of the MAP spectrogram, we added random noise drawn from our PDV noise model for visual comparison with

the data. The noiseless bands at 5 < 2 and 5 > 23 GHz are the result of bandpass filtering during pre-processing.
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FIG. 3. (a) The posterior distribution of standardized residuals (PDV model subtracted from data) and (b) resulting quantile-quantile (QQ) plot

with respect to the normal distribution. The synthetic noise is Gaussian and so residual deviation from a normal distribution is a measure of

the error in recovering the synthetic PDV signal; this is quantified in the QQ plot by the degree of deviation from linear.
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FIG. 4. The posterior velocity history (velocity, { versus time, C) inferred from the synthetic PDV data shown in Fig. 1. The blue solid line and

envelope, respectively, denote the median and 95 % credible interval over the sample distribution of velocity curves. The orange dashed line

denotes the injected model from which the synthetic data were generated. The "bow tie" shape is a result of using a piecewise linear model for

the time series.
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A Bayesian approach to time-domain PDV analysis 6

TABLE II. Priors used in this work for each model parameter.

Model Parameter Units Prior distribution Prior hyperparameters

Velocity history {0 km s−1 Gaussian mean = 25, std = 1

¤{8 km s−1 per `s Gaussian mean = 0, std = 100

Phase offset q0 deg Uniform min = −180,max = 180

E. Verification against synthetic data

1. Synthetic data generation

To verify that our method can accurately recover velocity

histories from PDV data, we tested it on a synthetic dataset

that is similar to the data used for experimental validation

in Section III. We generated a synthetic oscilloscope trace

over an interval of 0.1 – 0.2 `s, with a sample interval of

0.02 ns that is typical of multi-GHz oscilloscopes. We added

a PDV signal with start and end times of 0.12 and 0.16 `s,

respectively, amplitude +̂ = 1 V, phase offset q0 = 0 deg, and

laser wavelengths _T = 1549.219 nm and _R = 1548.945 nm.

These wavelengths correspond to down-shifted PDV with a

"bounce" at an apparent velocity of {∗ = 26.5 km s−1.

The velocity history was modeled using the piecewise lin-

ear model described in Section II C 1, with {0 = 25 km s−1 and

twenty ¤{8 parameters (see Table I) that generate arbitrary, but

typical, varying behavior of a propagating shock front in a

solid diagnostic block. This was then converted to the appar-

ent velocity using a refractive index of =0 = 1.528, equal to

that of the quartz sampled used in the experiment described in

Section III. Finally, we added noise with unity standard devi-

ation and applied a bandpass filter between 2 and 23 GHz, to

simulate the AC coupling and bandwidth limit of the scope, re-

spectively. The resulting synthetic oscilloscope trace is shown

in Fig. 1 and the spectrogram in the top left hand panel of

Fig. 2.

2. Model prior selection

It is evident from visual inspection of the synthetic oscillo-

scope trace that this is a challenging inference problem; we are

attempting to infer a model from noisy data that describes the

time-varying behavior of a periodic signal with several thou-

sand cycles. The likelihood function is inherently multi-modal

because frequency aliases, corresponding to higher velocities,

will produce equally good representations of the data. Like-

wise, the signal periodicity will generate several local likeli-

hood maxima that are likely to prove challenging for numer-

ical samplers. Given these challenges, we adopted Gaussian

prior distributions for our velocity model parameters that are

weakly informative and therefore able to regularize the infer-

ence against finding aliased modes with physically-undesirable

velocities. In particular, the prior mean and standard deviation

for the initial velocity, {0, is chosen based on inspection of the

signal in the spectrogram. This is further helped by including

the phase offset parameter, which shifts the model to better

match the true periodic PDV signal. We summarize the prior

distributions for each model parameter in Table II.

3. Verification results

In Fig. 2 we compare spectrograms for the synthetic data

with those obtained from the inferred model velocity history.

In the top-right panel we show the full posterior spectrogram,

which is generated by stacking spectrograms for each set of

model parameters sampled from the posterior probability dis-

tribution. Visually, this is comparable to the signal seen in

the data. We also show the maximum a posteriori (MAP)

spectrogram, with noise added from our model, which again

is visually consistent with the data. The corresponding MAP

residual is shown and consistent with noise, again demonstrat-

ing that the synthetic signal is recovered by the method.

This is further demonstrated in Fig. 3, where we compare

the posterior distribution of residuals in the PDV trace (differ-

ence between model and data) with the normal distribution.

The synthetic noise is Gaussian and so any deviation from the

normal distribution is a metric for errors in recovering the syn-

thetic signal. Quantitative analysis is done using the quantile-

quantile (QQ) plot25, which graphically assesses whether the

posterior is plausibly consistent with a normal distribution.

The linearity of the points suggest that the residuals are indeed

drawn from a normal distribution.

As a final assessment of the verification, in Fig. 4 we com-

pare the inferred posterior velocity history with the injected

model. They are consistent within the 95 % credible inter-

val of the posterior, demonstrating that the injected model is

recovered with high confidence.

III. EXPERIMENTAL VALIDATION

A. Experimental setup

Validation of our Bayesian approach to PDV analysis was

achieved by comparing the inferred velocity histories from a

real experimental dataset with those obtained using the stan-

dard STFT-based method. To this end, we used data from a re-

cent experiment by Skidmore et al.26 with the STAR two-stage

light-gas gun (2SLGG) at Sandia National Laboratories16.

Skidmore et al. used down-shifted PDV to measure the veloc-

ity of a shock driven into a 3.5 mm diameter quartz sample by

a 17 mm diameter tantalum projectile launched at 6.5 km s−1

using the 2SLGG. This was carried out as part of a commis-

sioning campaign for a novel hydrodynamic pressure amplifier

developed at First Light Fusion (FLF) as a platform for low-

cost Equation-of-state (EoS) measurements at terapascal pres-

sures. The geometry of the pressure amplifier (to be presented

in a forthcoming paper by Skidmore et al.26) is such that the

shock wave is split and recombined to form a Mack stem at

the output. The resulting planar shock front is sufficient to

uniformly compress the quartz sample, situated at the output,   
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A Bayesian approach to time-domain PDV analysis 7
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er
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projectile
1 3 5 7

9 10 11 12 13 14 15 16

19 21 23

PDV Probe Fibers

Wavelengths [nm]

1549.193

1554.125

1550.654

FIG. 5. Schematic (not to scale) of the experimental set up used to provide a validation dataset for our Bayesian approach to PDV analysis.

A 17 mm diameter tantalum projectile was launched at a velocity of 6.5 km s−1 using the STAR two-stage light-gas gun at Sandia National

Laboratories16, which drove a pressure-amplified planar shock into a 3.5 mm diameter quartz sample at velocities ≈ 25 km s−1. The velocity

history of the shock wave was measured using a bespoke multi-point PDV probe containing an array of 24 fibers, each separated by 125 `m,

and arranged in the configuration shown in the right-hand insert. Four fibers (empty circles) were used to send the laser light to the quartz

sample and 15 (numbered circles) to return the reflected light from the shock front. Fiber 16 (crossed out) was broken and so did not return

any usable data. The colors denote fiber light of the same wavelength, which are given in Table III.

to pressures exceeding 1 TPa across a 1 mm diameter region

(equivalent to velocities ≈ 25 km s−1); similar schemes have

been fielded previously on laser platforms27.

To test the amplifier performance, a bespoke multi-point

PDV probe of 24 optical fibers was placed in three rows ex-

tending 875 `m across the quartz sample as shown in Fig. 5.

Four fibers were used to send laser light to the sample, and 15

to return the reflected signal (although one return fiber was bro-

ken and so did not provide usable data). The incident light used

an NKT Koheras BASIK laser source at 40 mW connected to

a 4 way light splitter. Each splitter output was connected to an

independent attenuator to regulate the incident power so as to

obtain a -30 dBm of return light in the PDV probe, measured

using a power meter in the return fiber. Multiple target and

reference wavelengths were used to minimize the cross-talk

between adjacent channels; we summarize these in Table III.

Skidmore et al. carried out PDV analysis using the standard

STFT approach, obtaining velocity histories that match the per-

formance requirements of the amplifier. However, they noted

that this method prevented velocity recovery within the first 1-

2 ns (due to the finite time window). By forward-modeling the

PDV trace directly, our method removes the need to choose an

STFT window function; effectively extrapolating the velocity

behavior, with uncertainty, to the chosen start-time. Skidmore

et al. also noted that two probes (15 and 23) had unreliable ve-

locity extraction due to spectral broadening resulting from the

numerical aperture of the optical fiber. Our approach would

be similarly affected by contamination from multiple veloci-

ties, but provides a reliably objective method of inferring the

signal-to-noise weighted velocity in the fiber.

B. Data preparation

The raw oscilloscope traces were recorded with 50 GS s−1

Tektronix digitizers with 25 GHz bandwidth, which we in-

gested into a Python dictionary. We removed DC and low-

frequency signal components using a high-pass filter with a

2 GHz cutoff, and then estimated the noise covariance using

the technique described in Section II C.

To avoid unnecessarily increasing the complexity of our

inference problem, we estimated the time-varying behavior of

the amplitude empirically from the data. This was achieved

by applying a 3rd-order Savitsky-Golay filter28, with a window

size of 10 ns (several hundred PDV fringes for the expected

velocity of 25 km s−1), to the absolute values of the PDV data.

The data and the noise covariance were then normalised by this

estimated amplitude, ideally removing time-varying behavior

due to changes in the laser intensities and/or fiber performance.

This approach assumes that:

1. the signal-to-noise ratio is sufficiently high such that the

noise does not contribute significantly to our estimate of

the amplitude

2. temporal variations in amplitude are significantly slower

than the fringe period (ΔC ≫ 0.10 ns)

3. the PDV signal contains a single coherent component

and not multiple sinusoids   
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A Bayesian approach to time-domain PDV analysis 8
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Fiber 14

0.11 0.12 0.13 0.14 0.15 0.16

23
24
25
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FIG. 6. Velocity histories (velocity, { versus time, C) inferred from experimental PDV data with the STAR 2SLGG. The solid lines and

envelopes, respectively, denote the median and 95 % credible interval from our Bayesian analysis. The dashed lines denote the analysis by

Skidmore et al. using the standard STFT-approach, demonstrating similarity between the two methods. The single black error bar (top right)

indicates the velocity uncertainty (0.1275 km s−1) and time window (5 ns) of the STFT-based approach.   
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A Bayesian approach to time-domain PDV analysis 9

If these assumptions do not hold to desirable tolerances, then

the time-varying amplitude will need to be explicitly included

in the model, with a significant increase in the computational

complexity of the inference. Spectrograms constructed from

the resultant normalised oscilloscope traces are shown in the

left panels of Fig. 9.

TABLE III. Summary of the experimental parameters used for each

dataset in our analysis of the STAR 2SLGG shot. Fiber identification

numbers (IDs) are as shown in Fig.5. Wavelengths, _T and _R, are

for the target and reference lasers, respectively. Fixed start and end

times for the velocity history were chosen from visual inspection of

the corresponding spectrograms (Fig. 9).

Fiber ID _T [nm] _R [nm] Start time [`s] End time [`s]

1 1549.193 1548.923 0.120 0.145

3 1549.193 1548.923 0.120 0.150

5 1554.125 1553.855 0.120 0.160

7 1554.125 1553.855 0.120 0.160

9 1549.193 1548.923 0.120 0.150

10 1549.193 1548.923 0.120 0.150

11 1550.654 1550.383 0.120 0.155

12 1550.654 1550.383 0.120 0.155

13 1554.125 1553.855 0.120 0.155

14 1554.125 1553.855 0.120 0.160

15 1549.218 1548.945 0.120 0.160

16 1549.218 1548.945 0.120 0.160

19 1550.654 1550.383 0.120 0.155

21 1550.654 1550.383 0.120 0.165

23 1549.218 1548.945 0.120 0.160

C. Validation results

We used the method discussed in Section II for analysis of

the experimental PDV data, with the parameter priors summa-

rized in Table II and the experimental parameters summarized

in Table III. In early tests, we found that the sampling algo-

rithm would infer start and end times for the PDV signal that are

significantly different to those evident from the spectrogram.

This is due to the finite temporal resolution of the parametrized

model; a model that is a good fit to a subset of high signal-to-

noise data is preferred over one that is a worse fit to the whole

dataset. Therefore, in order to recover a model of the whole

signal, we fixed the start and end times to those evident from

visual inspection of the corresponding spectrograms.

In Fig. 6 we show the inferred velocity histories for each

fiber optic probe using our Bayesian analysis and the STFT

approach. Qualitatively, the approaches give similar results

and our analysis supports the finding of Skidmore et al. that the

amplifier achieves the required design specifications. Minor

systematic velocity differences of ∼ 1 % for some fibers (for

example, Fiber 21) are likely due to details of the extraction.

Larger differences in velocity at specific times (for example,

Fiber 15 between 0.125 and 0.135 `s) are the result of spectral

broadening or laser speckle. The spectrograms generated from

the experimental data and those inferred using the model are

shown in Fig.9, from which we can see the advantage of the

Bayesian approach in being able to infer signal from noisy data

(for example, Fiber 3) and interpolate across signal gaps (for

example, Fibers 5 and 7). Likewise, the Bayesian approach

has allowed us to infer velocity histories at earlier times than

was available with the STFT-approach.

IV. CONCLUDING REMARKS

We have presented a methodology for carrying out Bayesian

inference of velocity histories directly from PDV oscilloscope

data as an adjunct to standard STFT-based analysis. We ver-

ified the method using synthetic PDV data generated from a

template based on an experiment carried out by Skidmore et

al.26 with the STAR 2SLGG at Sandia National Laboratories16.

We were able to recover the injected velocity history, within

the uncertainties, and the posterior predictive distribution is

consistent with the synthetic data. We then applied it to the

real experimental data and compared with velocity histories

obtained using the standard STFT-based analysis. We find

that in general the two approaches agree, although we caution

that the prior probability distributions for model parameters

need to be carefully chosen to regularize the inference against,

for example, aliasing of higher frequency harmonics. The

Bayesian approach is found to be particularly advantageous

when choices need to be made about interpolating across re-

gions of missing data, low signal-to-noise or laser speckle.

The inferred velocity history is dependent on the model

and priors chosen by the user (here we use a piecewise lin-

ear model) and, importantly, the resolution. We therefore

caution that this does not capture uncertainty due to model

misspecification, for example, of any rapidly time-varying or

discontinuous behavior. Likewise, multiple velocities can only

be captured by either including them explicitly in the model

or, possibly, by using multi-modal sampling techniques. Here,

we have assumed a single velocity component so that the PDV

amplitude can be capture and normalised in a pre-processing

step; multiple velocities would require the amplitudes to be ex-

plicitly included in the model. These issues can be identified

post-hoc using posterior predictive checks (see e.g. Fig. 3) and

overcome by including a sufficiently flexible model with the

required parameters to capture the desired behavior. How-

ever, increased model complexity has associated computa-

tional costs; even with the model used here the numerical

sampling can take several hours to converge. We therefore

recommend that it be used as a complementary method to the

standard STFT-based approach.
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Appendix A: Demonstration of the noise model

The noise model is a critical component of any inference

method. In Section II C 3 we described our PDV noise model,

which is based on a multivariate Gaussian distribution with

mean zero and a covariance matrix estimated from Monte-

Carlo simulations of bandpass-filtered white noise. Here we

demonstrate the validity of this model; in Fig. 7 we show an

example of correlated Gaussian noise, sampled at 50 GHz,

that has been generated using this model for a 1 GHz low-

pass filter. The correlations between data at high frequency

are visually evident when compared with Gaussian noise that

has been generated using a model with no covariance. This

is further demonstrated by the spectrograms shown in Fig. 8,

which show the successful removal of noise frequencies greater

than 1 GHz.

Appendix B: Experimental validation data

Experimental validation data were obtained by Skidmore

et al. from a shot with the STAR 2SLGG facility at Sandia

National Laboratories26. A planar shock front was driven into a

quartz sample at about 25 km s−1 and PDV data were recorded

using fourteen fiber-optic probes in a linear array across a

1 mm region. The oscilloscope traces were bandpass filtered

and the signal amplitude estimated using the method described

in Section III B. Spectrograms constructed from the resultant

normalized oscilloscope traces are shown in the left panels in

Fig. 9. The inferred posterior spectrograms are shown in the

right panels of the same figure, highlighting the ability of the

Bayesian method to recover the signal from noisy data.
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FIG. 7. Correlated Gaussian noise (orange; voltage, + versus time, C) generated using a covariance matrix that models the effect of a 1 GHz

low-pass filter using the method discussed in Section II C 3. Uncorrelated Gaussian noise (grey) is shown for comparison.
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FIG. 8. Spectrograms (beat frequency, 5 versus time, C) generated from (a) the uncorrelated and (b) correlated noise-only traces shown in

Fig. 7, showing the expected removal of frequencies above 1 GHz.
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FIG. 9. Spectrograms (beat frequency, 5 versus time, C) generated from the experimental validation data discussed in Section III (left panels)

and the inferred posterior distribution of model PDV signals (right panels).
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FIG. 9. (Continued) Spectrograms (beat frequency, 5 versus time, C) generated from the experimental validation data discussed in Section III

(left panels) and the inferred posterior distribution of model PDV signals (right panels).   
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FIG. 9. (Continued) Spectrograms (beat frequency, 5 versus time, C) generated from the experimental validation data discussed in Section III

(left panels) and the inferred posterior distribution of model PDV signals (right panels).   
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