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A simple, generalised methodology is developed for the estimation of the Lawson number (a.k.a.
the ‘fusion triple product’) and related quantities of interest, using information contained in the
diagnostic probe files produced by First Light Fusion’s (FLF) Hytrac and B2 design codes. The
calculation of the confinement time considers cases where the neutron output of the target comes in
a number of distinct ‘emission events’, each of which may be multi-modal in nature and separated
from one another in time over the target operation. For targets whose yield comes from a single
pulse of neutrons, our modified definition reduces to the commonly used definition for conventional
laser-driven hot spot ignition designs. The number density and temperature of the fuel ions are
based on a weighted average of suitable characteristic values from all neutron emission events that
depend on the reaction rate in the fusion fuel. The fuel ion density is also generalised to account
for arbitrary mixtures of reactive and inert ion species. Three examples are given, showing detailed
traces and the operation of the method. The tool has then been run on a large number of FLF
designs, including future pipeline designs and the design which has recently demonstrated fusion
[1, 2]. The results are plotted following Wurzel and Hsu [3] and reveal the unique nature of FLF’s
approach, which has very high values of the product of fuel ion number density and confinement
time.
Keywords: Lawson number, fusion triple product, Wurzel and Hsu, Fusion Energy Base, confinement time,
burn-weighted average, BWA, fusion performance average, FPA

I. INTRODUCTION

The motivation of the present work is to provide the
ability to quantitatively compare the predicted fusion
performance of FLF’s target designs with the many and
various existing fusion schemes. Furthermore, being able
to quantify the fusion performance of systems without di-
rectly referring to neutron yields is extremely useful from
the perspective of optimisation work for future target
design and development, as well as for tracking the his-
torical progress of the company’s technical capabilities.
Given the extremely diverse nature of the present global
effort towards achieving controlled fusion, such compar-
isons require careful consideration and an open, collabo-
rative conversation across the many facets of the indus-
try. To this end, Wurzel and Hsu [3] have recently pub-
lished a landmark paper which seeks to undertake just
such a broad review and present a quantitative and unbi-
ased comparison. Note that at the time of writing Wurzel
and Hsu’s paper is a pre-print available on the arXiv
server, although the authors anticipate publication in Q2
of 2022. Their work is drawn from an online database
curated by Wurzel: www.fusionenergybase.com, from
which all the data described in this report has been taken.

As discussed in Ref. [3], the principal figure of merit
through which the performance of fusion systems may
be judged is the well-known ‘fusion triple product’, often
also referred to as the ‘Lawson number’, originally intro-
duced by J. D. Lawson in a declassified technical report
from 1955 (later published as Ref. [4]) and subsequently
expanded on in numerous works over several decades (see
the numerous references cited in Ref. [3]).

The Lawson number/FTP is written in its most gen-

eral form as the product of the number density, ni, and
temperature, Ti, of fuel ions in a fusing plasma and a
meaningful time scale, τ , over which the fusion occurs:

L =niTiτ . (1)

The interpretation of Eq. (1) is most commonly under-
stood to mean the density and temperature of the fuel
during fusion and, in particular, the time scale is asso-
ciated with a ‘confinement time’ for the assembled ther-
monuclear fuel. A detailed discussion on the origin of the
expression and the nuances that must be considered in
the context of real fusion systems is covered admirably
in Ref. [3], and will not be repeated here.

The most important differences that are relevant to
the current discussion are that the various terms in
Eq. (1) follow different prescriptions for the main two
families of devices used in controlled fusion research;
magnetic confinement fusion (MCF) and inertial con-
finement fusion (ICF). These are:

MCF (mostly tokamak-like devices):

Here, Eq. (1) is to be interpreted as the triple product

L [keV s/m3] =ni0 [1/m3]× Ti0 [keV]× τ∗E [s] , (2)

in which the following parameters have been defined:

• ni0: the density of fuel ions (typically always
deuterons and tritons) in the centre of a cross sec-
tional slice of the plasma profile. This may be mea-
sured using well-founded diagnostic techniques for
tenuous plasmas.
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• Ti0: as above, but for the fuel ion temperature.

• τ∗E : the ‘modified’ energy confinement time, which
accounts for thermal conduction losses and fusion
product heating from the idealised system, as well
as the transient start-up period where a potentially
significant fraction of the energy consumed goes
into heating the fuel to its operating conditions.

ICF (mostly laser-driven systems):

For laser-driven ICF, the Lawson number can either be
assessed using the relationship

L [keV s/m3] = 2.533×1021 ×YOCµ

×
[
(ρR)no αtot(n) [g cm−2]× 〈Ti〉no αn [keV]

]0.8
≡niτ [s/m3]× 〈Ti〉n [keV] , (3)

due to Betti et al. [5], in which µ = 0.4− 0.5, or through
the simple relationship to the pressure and time scale
related to the stagnation of the implosion over which the
fusion burn occurs

L [keV s/m3] = 1.04×1020 × pstag [Gbar]× τstag [ns] ,
(4)

as favoured by Christopherson et al. [6]. In the foregoing
expressions (3) and (4) the following parameters have
been defined:

• (ρR)no αtot(n): the total areal density of the compressed
target in the absence of heating due to stopping of
α particles.

• 〈Ti〉n, 〈Ti〉no αn : the ‘neutron-averaged’ ion temper-
ature, with/without α-heating.

• YOC: the ‘yield over clean’, being either the ratio of
measured to simulated neutron yield or, less com-
monly, the ratio of predicted yields obtained from
3D to 2D simulations.

• niτ : the Lawson n-τ (double product) parameter,
defined explicitly through the relationship encap-
sulated in Eq. (3).

• pstag: the average total plasma pressure in the fu-
sion fuel achieved during the stagnation phase of
the implosion. This usually inferred from post-shot
tuned simulations using measurements of ‘bang
time’ and incident shock speed.

• τstag: the duration of the stagnation phase, which
is defined as the full-width at half-maximum
(FWHM) of the temporal profile of the total neu-
tron production rate of the target [6].

For the sake of further clarification, it should be noted
that the determination of (ρR)no αtot(n) and 〈Ti〉no αn can only
be made using simulations for the obvious reason that

one cannot ‘turn off’ the fusion product heating. In con-
trast, the true neutron-averaged ion temperature 〈Ti〉n
may be determined from either simulations or experi-
mental diagnostics. Furthermore, the usage of Eq. (4)
as an alternative definition of the Lawson number is not
general since the equivalence 1

2pstag ∝ niTi only holds
for fusion fuels composed purely of hydrogen isotopes,
such as pure deuterium of a deuterium-tritium mixture,
under ideal (non-degenerate and weakly coupled) condi-
tions. If the fuel features elements other than hydrogen,
e.g. due to mix, one may generalise the relationship to
pi = pstag/(1 + 〈Zi〉) ∝ niTi. This is further complicated
if the fuel contains one (or more) populations of inert
ion species. In the most general case, where the mix-
ture is fully arbitrary and the conditions are non-ideal, a
simple relationship may not exist at all due to the non-
linearity of the equation of state. It is therefore preferable
to consider the product of the simulated/measured num-
ber density and temperature of the fuel ions, rather than
the stagnation pressure. More discussion will be given to
this point later on.

As stated, the aim of this letter is to provide a reason-
able estimate for the Lawson number (and related pa-
rameters) to capture the progression and indicative per-
formance of FLF’s target designs; both historical and
recent. Of course, the most credible manner in which to
pursue this goal would be to measure experimentally the
relevant parameters in order to follow the well-defined
methodologies described above for laser-driven ICF (the
fusion scheme to which FLF’s approach is most aligned).
In the absence of such data, however, one must rely solely
on simulations to provide the relevant estimates. Since
it is generally intractable to base any methodology on
requiring the full spatial and temporal output from sim-
ulations, i.e., requiring the plasma conditions from the
entire multi-dimensional grid at all time steps, we con-
sider instead using only the time-dependent outputs pro-
duced by the various in-built probes available in FLF’s
codes: Hytrac and B2. The second important consider-
ation that is addressed is the generalisation of the loose
criteria that form the ‘standard’ approach discussed by
Wurzel and Hsu. In this regard, the meaning and eval-
uation of the confinement time is extended to targets in
which multiple neutron emission events are induced due
to the more complex hydrodynamics associated with the
implosion of FLF’s targets.

II. METHODOLOGY

In order to remain as closely aligned as possible to
the accepted definitions of the Lawson number discussed
in the previous section, we consider a true triple prod-
uct composed of independent assessments of the number
density and temperature of the fuel ions and the confine-
ment time. Thus, the aim is to assess the viability of
using the information available in the Hytrac/B2 probe
outputs to approximate the desired quantities.
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A. Confinement time

As will become clear, the most important aspect of
the methodology developed in this work is the estima-
tion of the confinement time. Christopherson et al. [6]
have investigated the approximate scaling of ignition cri-
teria for hot spot-style ICF using integrated simulations,
leading to an approximate relationship between the stag-
nation time, τstag, and the system’s confinement time as
τ ≈ 1

3τstag. Note that Wurzel and Hsu specifically de-
note the stagnation time as ‘the full-width half-maximum
(FWHM) of the neutron-emission history’ [3]. The factor
of 1/3 is the result of three considerations related to the
production and transport of the fusion products (α par-
ticles) throughout the burn phase (see Ref. [6] for more
details). Given that the Lawson number is an inherently
approximate figure of merit, we choose to ignore this fac-
tor as it is not clear how to construct suitable analogues
for FLF’s targets.

A much larger difference to the standard methodology
for laser-driven ICF that must be considered arises due to
the complexity of the different target geometries studied
at FLF. Even factoring in real 3D effects, it is expected
that the neutron emission in hot spot ignition designs
should occur in a single, strong pulse, produced during
the stagnation of the main fuel assembly. For many of
the targets of interest to FLF the neutron output comes
instead from a succession of neutron production pulses,
all originating from a single global implosion of a single
volume of fuel, the character and temporal separation of
which often vary widely over the design space. For the
present application it is therefore desirable to generalise
the definition of confinement (stagnation) time to an ar-
bitrary number of neutron ‘emission events’. Naturally,
it is important that this generalised definition should re-
duce to the single-pulse (hot spot design) case, i.e., for a
single neutron emission event: τ ∝ FWHM(∂Y/∂t).

To fulfill the foregoing restriction, we choose to base
our approach solely on the total neutron production rate
history captured in the probe files produced by Hy-
trac/B2, and consider a total confinement time given by
the sum over all distinct neutron emission events

τ ≈
∑
events

τevent =
∑
events

FWHM
(
∂Y

∂t

)
event

. (5)

The identification and characterisation (in terms of their
FWHM values) of all the relevant peaks in the total neu-
tron production rate history thus constitutes the core of
our estimation for τ .

1. Identifying relevant peaks in the neutron production
history

Determining whether or not a particular peak is ‘rel-
evant’ can be formalised using a descending integration
method (DIM). In the context of the current problem,

consider the normalised total neutron production rate

R(t) =
∂Y/∂t

max(∂Y/∂t)
, (6)

where max(∂Y/∂t) denotes the global maximum rate,
i.e., the largest value of ∂Y/∂t for all times 0 ≤ t ≤ tend.
The normalised rate R(t) can be thresholded by subtract-
ing a constant value, 1− R0 with R0 < 1, and retaining
only positive values:

R′(t;R0) = max[0, R(t)− (1−R0)] . (7)

The effective neutron yield calculated by integrating the
thresholded normalised rate with respect to time is then

Yeff(R0) = max

(
∂Y

∂t

)∫ tend

0

dt R′(t;R0) . (8)

The object of the DIM is then to iteratively increase
the value of R0 asymptotically to unity and evaluating
Eq. (8) until the condition

Yeff(R0) = fYtot = f

∫ tend

0

dt
∂Y (t)

∂t
(9)

is satisfied for some pre-defined fraction of the total neu-
tron yield, f . By default the latter is set to f = 0.99,
although it is a free parameter in the model. The DIM
procedure therefore returns the indices of the array of
values for ∂Y/∂t containing features which cumulatively
contain the desired fraction of the total yield from the
simulation.

As shown in Fig. 1, as f → 1 we find a progressive de-
crease in the value of the threshold R0 (black horizontal
thin dashed lines on each panel), which identifies differ-
ent sub-regions of the full total neutron production rate
history (thick black dashed curve). Each sub-region is
emphasised by the differently coloured thick curves that
are separated by regions containing normalised rates be-
low the threshold. Note that as the fraction is increased
some sub-regions join together, with new sub-regions cor-
responding to shallow peaks emerging. For the example
shown, the main structure eventually merges for f = 0.99
into a single set of structures (blue curve), with a small
additional peak at late time emerging (very small orange
curve at 1780.8 ns).

2. Finding the locations of peaks within a sub-region

With the indices delineating the different sub-regions
determined, the next step is to identify the times of the
various peaks (labelled j) contained in each one. This
is achieved by progressively solving for the roots of the
derivative of the curves in each sub-region, i.e., finding
all values of t jpeak, such that

∂R(t jpeak)

∂t
= 0 (10)
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(a) Three sub-regions of interest are identified for f = 0.5.
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(b) Three different sub-regions are found for f = 0.85.
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(c) The two later-time sub-regions merge for f = 0.9.
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(d) All previous sub-regions merge for f = 0.99, with a very small
new late-time sub-region identified for f = 0.99.

Figure 1. Influence of the fraction f on the identification of distinct peak structures via the DIM method: For
f = 0.5 (a), three distinct structures are identified (blue, orange and green thick curves). The first two peaks from Panel (a)
merge and a new intermediate peak emerges when f = 0.85 (b). Increasing to f = 0.9 (c) enables the two later peaks from
Panel (b) to merge, leaving only two distinct features. When the fraction is increased to f = 0.99 (d) the two sub-regions from
Panel (c) merge and a new, nearly invisible sub-region containing an essentially negligible peak emerges at t ≈ 1780.8 ns. In
each panel, the vertical brown lines indicate the locations of the individual peaks, and the shaded regions surrounding them
are within their full-width at half-maximum (FWHM) regions. Note that some of the FWHM boundaries of different peaks
may overlap either partially or fully (the peak-in-a-peak scenario).
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and simultaneously

∂R(t jpeak −∆t j−)

∂t
> 0 ,

∂R(t jpeak + ∆t j+)

∂t
< 0 . (11)

Here, ∆t j± is the time difference computed from the data
about t = t jpeak. Note that in order to remove the un-
due influence of fast-varying noise in the total neutron
production rate the peaks are located after the data has
been smoothed using a Savitzky-Golay filter [7]. This
procedure results in the values of tpeak shown by brown
vertical thin lines in each panel of Fig. 1.

3. Determination of the FWHM of a particular peak

The FWHM of peak j in the total neutron production
rate is defined as the difference of two ‘boundary’ times

FWHM(∂Y/∂t) jpeak = t j+1/2 − t
j
−1/2 . (12)

As will be shown later, it will prove important to distin-
guish between these two boundary times, and to do so
we refer to t j−1/2 as the ‘early’ boundary time of peak j,
and to t j+1/2 as the ‘late’ boundary time of peak j. The
boundary times themselves are defined via the implicit
relationship

R(t j±1/2) =
1

2

(
R(t jpeak) +R0

)
. (13)

To calculate the boundary times we use a straightfor-
ward algorithm which decrements/increments (reverse/-
forward search) the element index of the normalised rate,
starting at the peak time in each case, until the condition
R(ti) ≤ 1

2 (R(t jpeak) + R0) is fulfilled. In both cases, this
returns the first element index with a normalised rate
R ≤ 1/2, which is denoted i. The first element with a
normalised rate R > 1/2 is then i+1 for the early bound-
ary time and i − 1 for the late boundary time. With
these indices determined, the boundary times are subse-
quently refined using linear interpolation. The specific
expressions are:

t j−1/2 = ti +
1/2−R(ti)

R(ti+1)−R(ti)
(ti+1 − ti) , (14)

and

t j+1/2 = ti−1 +
1/2−R(ti−1)

R(ti)−R(ti−1)
(ti − ti−1) . (15)

4. Refining FWHM boundary times for partially/fully
overlapping peaks

So far, we have described an idealised situation in
which one may confidently apply the foregoing algorithm
to a sub-region containing either a single peak or a series

of clearly differentiated peaks. One may then identify
each distinct peak with a neutron emission event and
use Eq. (5) to compute the total confinement time of
the system. However, it is relatively common to find
that the total neutron production rate in a sub-region
describes a complex structure with numerous peaks (see
Fig. 1), some of which are not only not clearly differen-
tiated but are fully subsumed within one another. To
formalise what we mean by ‘clearly differentiated peaks’
consider the cartoon shown in Fig. 2. In this example,
the development of a single peak into two peaks is shown,
with each progression gradually reducing the amplitude
of the inter-peak valley. The structures shown in Pan-
els (b) and (c) are to be interpreted as a single neutron
emission event in which the production rate varies in a
complex manner; indeed, these cases are in fact degener-
ate with respect to the FWHM values calculated for the
two peaks. The point at which the two peaks can rea-
sonably be categorised as ‘clearly differentiated’ is shown
in Panel (e), in which there is no overlap between the
FWHM boundary times of the peaks.

From the perspective of the confinement time calcula-
tion, it becomes evident that not all of the FWHM val-
ues calculated for all identified peaks should necessarily
be included for the summation in Eq. (5). In particu-
lar, any peak-in-a-peak scenarios (see Panels (c) and (d)
of Fig. 1) lead to overestimating the total confinement
time; potentially many similar FWHM durations can be
obtained from an undifferentiated, multi-peak structure,
when only a single value is required. Thus, in general the
FWHM duration of a single neutron emission event must
be defined in such a way as to remove and/or merge the
contributions from all fully/partially overlapping peaks
contained within it.

In order to handle cases with an arbitrary degree
of complexity, we have developed a recursive algorithm
which merges or removes the boundary times of partial-
ly/entirely overlapping peaks, resulting in a robust char-
acterisation of the total confinement time. Having iden-
tified all the peaks in all sub-regions, then for each sub-
region we successively compare each peak to the previous
one within the list of peaks belonging to it. Two tests are
considered for each comparison:

1. The early boundary time of a given peak is less
than the late boundary time of the previous peak,
i.e. t j−1/2 < t j−1+1/2

2. The late boundary time of a given peak is less than
the late boundary time of the previous peak, i.e.
t j+1/2 < t j−1+1/2

If either of the above tests are met individually this in-
dicates that the peaks partially overlap. In this case a
new peak is created with t−1/2 = min(tj−1−1/2, t

j
−1/2) and

t+1/2 = max(tj−1+1/2, t
j
+1/2), and the original two peaks

are removed from the list. If both conditions are met,
the second peak is fully encompassed by the first, and
is removed from the list. If neither condition is met the
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Figure 2. Characterisation of different peak structures: The development of an unambiguous single peak structure
into a pair of distinct, clearly differentiated peaks is shown. In each panel, the upper dashed lines represent the amplitudes
of the peaks and the dashed lines roughly half-way up the y-axis denote their half-amplitudes. Note that the amplitudes of
two developing peaks are held constant across Panels (b-e), with only the amplitude of the inter-peak valley decreasing. (a):
a single peak (P1) is present, and is characterised by a single FWHM period (maroon shaded region). (b): a second peak
(P2) of similar amplitude to 1 is introduced, and the valley between them is very shallow. Applying the FWHM calculation to
both peaks results in FWHM regions for both peaks that contain each other, with FWHM1 < FWHM2. (c): The amplitude
of the inter-peak valley is increased, but, crucially, is greater than the half-amplitudes of either peak; this is a fully degenerate
situation to Panel (b). (d): The amplitude of the inter-peak valley is now greater than the half-amplitude of P2 but remains
less than the half-amplitude of P1. In this case the FWHM of P1 does not contain P2, but remains fully encompassed within
FWHM2. (e): The amplitude of the inter-peak valley is less than the half-amplitudes of both P1 and P2. Both peaks are now
clearly differentiated, as there is no overlap of the boundary times of their FWHM regions.

algorithm moves on to the next peak comparison for the
sub-region. If a change is made to the list of peaks, the
algorithm is re-run for the modified list of peaks; this
allows the method to work for cases where there are mul-
tiple peak overlaps within a single sub-region. After this
algorithm has been run the result is a list of pairs of
boundary times that can be unambiguously associated
with all the distinct neutron emission events in a partic-
ular sub-region.

Considering the example shown in Panel (d) of Fig. 1,
the algorithm successfully identifies and removes both
boundary times (early and late) associated with the
fourth peak in the list for sub-region 1 (blue curve) prior
to refinement. The result is three distinct neutron emis-
sion events in sub-region 1, the third of which contains
two undifferentiated peaks. The boundary times of all
surviving neutron emission events can be seen as the
shaded regions in Panel (a) of Fig. 4.

5. Convergence of total confinement time as a function of f

The final point that requires discussion with respect
to the confinement time is its dependence on the free
parameter f introduced in Eq. (9) for defining the dif-
ferent sub-regions. Considering again the test simulation
shown in Fig. 1, it is clear that the total confinement time
changes substantially as f is increased from 0.5 to 0.99.
It should be expected that as f → 1 then the confine-
ment time should asymptotically approach the total run
time of the simulation. For simulations where the total
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Figure 3. Dependence of the calculated total confine-
ment time on the DIM total yield fraction f : Three
test simulations are considered, with test simulation 1 being
that used in Fig. 1, and test simulations 2 and 3 being variants
with modest changes in set-up configuration. The behaviour
of the data in the highly zoomed-in range 0.9 ≤ f < 1 is
shown in the right-hand panel.

yield is heavily concentrated into a number of emission
events, one would expect that the total confinement time
should convergence to a value consistent with the dura-
tion of the established neutron emission events. This is
not always guaranteed, however, since if f approaches
unity too closely then the threshold value R0 used in
determining the sub-regions of interest becomes so close
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to zero that contributions from regions with negligibly
small yields end up being added to the total confinement
time. To combat this pathology we only include contri-
butions from neutron emission events whose fractional
yield is greater than 1% of the sum over all events. The
result is shown in Fig. 3, wherein it is clear that stable
converged results for the total confinement time are ap-
proached as f tends to unity. We find in general that
the confinement time calculated using f = 0.99 is always
a reasonable estimate. Given the approximate nature of
the definition itself we choose this as the default value
for all calculations.

B. Average fuel conditions

Now that the confinement time has been defined it re-
mains to describe how the characteristic values for the
thermodynamic state of the fuel ions are treated. Given
that the confinement time is the sum over multiple neu-
tron emission events, it seems appropriate to consider an
average value of the single temperature and number den-
sity values which characterise each event. The weighting
of the contribution of each event should of course consider
its importance to the total target performance.

Although a number of different methods for approxi-
mating the weights may be envisioned, we have chosen
to use the neutron yields due to the events, such that the
values used in computing the Lawson number are:

〈X〉f =

∑
events Yevent〈X〉event∑

events Yevent
. (16)

Here, the symbol X stands for either Ti or ni; these are
referred to as the ‘fusion performance average’ (FPA)
values of the temperature and number density. The yield
associated with a particular neutron emission event is
defined as

Yevent =

∫ t+1/2

t−1/2

dt
∂Y (t)

∂t
. (17)

Weighting by the fractional event yields in constructing
the FPA values ensures that contributions due to tran-
sient simulation artefacts do not overly distort the esti-
mate of the overall fusion performance. The final step in
the methodology is to define the characteristic values for
each event, 〈Ti〉event and 〈ni〉event, such that the Lawson
number

L [keV s/m3] ≈〈ni〉f [1/m3]× 〈Ti〉f [keV]× τ [s] , (18)

can be constructed for a given simulation.

1. Fuel ion temperature

With respect to the ion temperature, the accepted ex-
perimental procedure involves measuring the broadening

of the neutron spectrum emitted by a fusion target, which
may be correlated with both the thermal and bulk hy-
drodynamic motion of the fuel ions [8, 9].

Without considering complexities such as synthetic di-
agnostics modelling, it suffices to use the burn-weighted
average (BWA) of the ion temperature [10, 11]

〈Ti〉b(t) =

(∫
dV

∂2Y (r, t)

∂V ∂t

)−1∫
dV

∂2Y (r, t)

∂V ∂t
Ti(r, t)

=

(
∂Y (t)

∂t

)−1∫
dV

∂2Y (r, t)

∂V ∂t
Ti(r, t) , (19)

as a reasonable surrogate for the temperature history of
the fuel associated with periods of neutron emission. In-
deed, the utility of the BWA ion temperature as a reli-
able indicator for the overall fusion performance of FLF
targets has been studied through multivariate sensitivity
studies [12]. In Eq. (19), the prefactor features the rate of
total neutron production (accounting for all fusion reac-
tion channels) and the weighting kernel in the integral is
its derivative with respect to volume. Ignoring depletion
of the fuel ion populations in the thermonuclear reactions
it is reasonable to write ∂2Y/∂V ∂t ∼ 1

2n
2
D〈σv〉d(D,3He)n

for fuels whose only reactive element is deuterium and
∂2Y/∂V ∂t ∼ nDnT〈σv〉d(T,α)n if a deuterium-tritium
mixture is present. The reactivities in the foregoing ex-
pressions may be computed in FLF’s codes using a num-
ber of different approximations, with the most common
being that of Bosch and Hale [13]. Note that in the most
general case of a strongly burning fuel, featuring signifi-
cant fusion product deposition and evolution of the par-
tial densities of fuel ions, ∂2Y/∂V ∂t must be evaluated
with a suitably detailed set of rate equations [8].

The average value of the BWA ion temperature over
the duration of each event is straightforwardly

〈Ti〉event =
1

τevent

∫ t+1/2

t−1/2

dt 〈Ti〉b(t) . (20)

This definition underlines the importance of the charac-
terisation of the neutron emission events, as described in
the discussion of the confinement time.

2. Fuel ion number density

Although the standard probes produced by FLF’s
codes do not track the BWA of the ion number density,
the BWA of the total mass density of the fuel, 〈ρ〉b(t), is
tracked. The latter is calculated with an equivalent ex-
pression to Eq. (19) in which the ion temperature is ex-
changed for the mass density. For targets featuring ‘sim-
ple’ fusion fuels, such as mixtures of deuterium-tritium,
the necessary conversion to the ion number density is
trivial; one simply takes the ratio

〈ni〉b(t) =
〈ρ〉b(t)

mi
. (21)
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(a) Test simulation 1: as featured in Fig. 1.
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BWA evolution plot: Shot 67

(b) Test simulation 2: a minor variation on test simulation 1, not showing the numerical artefact at late time.
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BWA evolution plot: Shot 68

(c) Test simulation 3: this case shows two distinct neutron emission events, separated by ∼ 6 ns.

Figure 4. BWA histories, FPA values and neutron production for different test simulations: In each case the
BWA/FPA ion and electron temperatures are shown in Panel (a), the fuel ion number density in Panel (b), and the normalised
total neutron production rate and cumulative neutron yield in Panel (c). The semi-transparent brown-shaded regions delineate
the distinct neutron emission events computed according to the process described in Sec. IIA.

Here, mi =
∑
a xama is the abundance-weighted mean

ion mass, xa = na/n
tot
i is the abundance (density frac-

tion) of a particular species, and ntoti =
∑
a na is the

total ion number density. The subscript a denotes the
elemental constituents of the material. If the reactive

fuel ions are mixed with a number of inert species, then
Eq. (21) must be modified. The total mass density of the
fuel material (assumed to be uniform in composition in
space) is the sum over all the sets of all reactive (R) and
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inert (I) ion species

ρ(t) =ntoti (t)
∑
a∈R,I

xama , (22)

so that the number density of a particular species in the
fuel material is

na(t) =
xaρ(t)∑
a∈R,I xama

. (23)

Since the only time-dependent component of Eq. (23)
appears in the numerator, then one may simply define
an effective mass for the reactive ions for a particular
simulation, such that

〈ni〉b(t) =
〈ρ〉b(t)

mreact
i

, mreact
i =

∑
a∈R,I xama∑
a∈R xa

. (24)

In Fig. 4, the BWA histories for the temperature and
number density of the fuel ions (and electrons) extracted
from the example simulation used in Fig. 1 are shown,
along with two variations. The corresponding values of
the FPA values for each quantity are represented by the
colour-coded, dashed horizontal lines. In each case the
total neutron production rate and cumulative neutron
yield (normalised to their peak values) are respectively
plotted in the third panel on the left/right-hand y-axes,
using a logarithmic scale. The semi-transparent brown-
shaded regions on each panel denote the FWHM time
boundaries of the distinct neutron emission events.

Of particular interest is the third test simulation shown
in Panel (c) of Fig. 4. In this case there are two distinct
neutron emission events separated by ∼ 6 ns. Without
the process of peak identification outline in this section,
this time could have contributed towards the total con-
finement time, increasing the triple product value. It
might be arguable that this is reasonable given that both
emission events come from one holistic process, but we
have chosen to be conservative. This example clearly
shows the utility of our generalisations.

III. RESULTS

With the methodology defined we may now estimate
the Lawson number (and related quantities) of different
FLF targets and compare to the results compiled from
Wurzel’s fusion energy base website. In Fig. 5, the data
are presented in the form of Fig. (25) from Ref. [3], show-
ing the Lawson number versus the characteristic fuel ion
temperature for the different fusion schemes considered.
The data point labelled ‘fusion measured’ successfully
measured a neutron yield [1] in close agreement with pre-
shot predictions; i.e., the yield over clean (YOC factor) is
of order unity. Therefore, the associated Lawson number,
which is based purely the on simulation data presented
in Ref. [2], may reasonably be taken to be indicative of
the ‘true’ value that would be measured experimentally.
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Figure 5. Lawson number versus characteristic fuel
ion temperature: Results from Tokamak MCF (red circles),
laser-driven ICF (gold circles) and other schemes (grey dia-
monds) are plotted along with FLF’s historical (pale blue cir-
cles), current (dark blue circle with black edge) and pipeline/-
future (dark blue circles with white-faces) data. The single
point denoting FLF’s current result with a neutron yield is
discussed in Ref. [1].
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Figure 6. Density-confinement time product versus
characteristic fuel ion temperature: Same as in Fig. 5,
but plotting the fuel ion temperature against the density-
confinement time product.

It is interesting to note the locus followed through the
triple product parameter space as FLF’s designs have
improved. Most visible in Fig. 6, the trajectory is un-
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Figure 7. Lawson number versus progression over
time (year): Same as in Fig. 5, but plotting the year asso-
ciated with the data points against the Lawson number. The
extremely rapid rate of progression at FLF is clearly demon-
strated in the sharp increase in estimated Lawson number
since 2020, following the regular deployment of cutting-edge
machine learning and optimisation methods in target design,
as well as a vastly improved manufacturing capability.

usual because it starts from a point of very high values
of niτ . Over time the temperature has increased but the
niτ value has remained within a certain window. There
are three designs with a much higher value of niτ which
stand out; these three points all come from one family of
target designs and are a separate group from the other
FLF designs. The value of niτ for these designs is higher
than any other point in the fusion energy base dataset.
It is important to note that despite this high value, the
temperature is still low; these are not ignition designs.
More generally, the neutron yield has a different depen-
dence on the three underlying values to the triple prod-
uct itself. This can readily be understood since the triple
product is linear with temperature, whereas for the de-
pendence of the fusion reactivity on temperature is gen-
erally far stronger [13]. This further explains why FLF
has been climbing a substantial slope in getting to first
demonstration of fusion, even though the triple product
numbers may give a different impression. Finally, Fig. 7
shows triple product progress over time, showing that
FLF has been making sustained, rapid progress over the
last several years.

Given that the methodology presented in this work is
completely general with respect to target geometry and

the detail of the neutron production history, we suggest
that it may serve as a useful future standard when calcu-
lating ICF triple product numbers for cross-device com-
parison in the global fusion community. Whilst it is un-
likely that all the details and idiosyncrasies of a particular
system can be encapsulated in the detail that a bespoke,
device-centric analysis could, the utility of this work is
that it defines a universal system which can be applied
to simulations of arbitrary systems, both historical and
contemporary.

IV. CONCLUSIONS

In this letter a robust methodology for calculating the
Lawson number (fusion triple product) based solely on
simple simulation output has been presented. The ap-
proach is generalised to target designs with complex,
e.g., non-spherical, geometries in which the total neutron
yield is produced in arbitrarily many ‘emission events’.
The total confinement time used to compute the Lawson
number accounts for all distinct emission events and in
the limit of a single pulse of neutrons, as encountered
in conventional hot spot ICF designs, reduces to (other
than a constant of proportionality) the accepted defini-
tion discussed by Chistopherson, Betti and Lindl [6]. In
deciding which peaks in the total neutron production rate
should be considered distinct, cases where peaks partially
or fully overlap are accounted for.

For the average conditions in the fusion fuel; the tem-
perature and number density of fuel ions, a weighted av-
erage over all emission events is used. The contribution
to the temperature/number density from each emission
event is given by the time-averaged value of the (time-
dependent) burn-weighted average over its FWHM dura-
tion. This definition was inspired by simulation metrics
discussed across ICF research: see, e.g., Weber et al. [11]
and has also been used effectively for convergence stud-
ies at FLF [10]. Thus, the reaction rate of the fusion fuel
within the reacting volume is fundamental in estimating
the state of the system over its evolution.

Applying the methodology to simulations of histori-
cal, contemporary and future pipeline FLF targets, we
have shown that the trajectory taken through the Law-
son number - temperature space is unique in comparison
to the data taken from www.fusionenergybase.com. In
particular, our recent result in which fusion was success-
fully measured occurs at a point on the plane where a
roughy ten-fold increase in fuel ion temperature would
lead to results in the same territory occupied by major
national laboratories, such the Omega and NIF lasers.
We therefore expect the framework presented here to be
useful in guiding further optimisation and refinement of
target designs.
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