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Fig. 5: An extended replication of Atzeni fig 5.11. Fuel mass is 10 mg.

Fig. 7: A contour plot of optimised temperature and gain. The areas

shaded blue are disallowed for practical power production,

leaving only the “island of viability” in the centre. Coupling eff is 2%.
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Simplified models exist for hot spot ignition,

where a burn wave propagates into surrounding

cold fuel, and for equilibrium ignition, where a

high-Z tamp traps radiation and provides

confinement, although the latter are less fully

developed and significantly more complex. A

simplified model for volume ignition is not known

to the authors. These simple models cannot be

relied on for accurate target design but they

can inform the design process at a fundamental

level.

The present work develops a simple ODE model

for volume ignition, verifying against prior holistic

simulation studies with good results.

One aspect necessitated the use of an ODE

model, and this is modelling the burn fraction. At

lower temperatures the power balance may be

positive but the heating rate may be slow, such

that the confinement time becomes the limiting

factor. The simple burn fraction formula cannot

be applied and an ODE approach was needed

to capture this trade-off.

An additional complication is degeneracy,

which is important to understanding the

maximum attainable gain. At some point

disproportionately more energy is required to

reach higher density. Further complication arises

from modelling the trapping of radiation, which

breaks the normal areal density scaling. This

means the parameter space to be explored is

3D rather than 2D.

Introduction Results

Conclusion

The thought experiment under consideration is a

sphere of equimolar DT at a uniform

temperature and density and surrounded by

vacuum. On release from this initial condition a

rarefaction immediately begins to propagate

inwards from the outer surface. This quenches

both the temperature and density; the rarefied

material can be assumed to effectively

disappear, making no further contribution to the

reaction. Meanwhile, the central region of the

plasma is being heated (or cooled) through a

balance of alpha heating, radiation loss and

conduction loss, and the DT is being consumed.

The model therefore has three dynamic

parameters, the temperature, the partial density

of DT and the radius of the fusing plasma. The

rate equations are,

where 𝑊𝛼 and 𝑊𝐶 are given by Atzeni eqs 4.2

and 4.10 respectively. The total density is

assumed to be constant. The reaction term itself

is calculated with the partial density, but all

other terms use the total density. This is akin to

modelling the mixture of D, T and He as

equimolar DT from the point of view of the

plasma properties.

The radiation term, 𝑊𝑅, is given by,

where 𝑟𝑑𝑖𝑟𝑎𝑐 is the Dirac chord and 𝑙𝑝 is the

Planck mean free path given by Atzeni eq

10.117.

The yield is tracked with an additional,

uncoupled rate equation,

where the factor of five recognises that the

alphas are only one fifth of the total energy.

The internal energy of the plasma is needed to

calculate fuel gain and is found by adding the

ideal gas and fermi gas expression in

quadrature.

This expression accounts for the investment of

energy in degeneracy, which limits the

attainable gain. Not that the rate equation for

temperature uses only the ideal gas expression

however. Using the quadrature expression the

energy equation cannot be rearranged to give

temperature.
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Fig. 1: A sketch illustrating three 

basic fuel configurations for ICF:

a) isobaric hot spot,

b) volume ignition,

c) equilibrium ignition.
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Fig. 6: top: effect of turning off radiation trapping,

bottom: effect of infinite confinement time

Fig 5 shows contours of gain in temperature –

density space. For each density there is on

optimum temperature where gain is maximised.

Above this temperature the additional energy

investment does not deliver significant enough

improvement in burn to increase gain.

At high density the pressure contours can be

seen to deviate downwards, this is due to

degeneracy. The gain is correspondingly

reduced by the energy investment in said

degeneracy.

On the gain boundary there are three regimes:

1. High T, low density – conduction loss

dominates, and even when igniting

confinement time limits gain

2. Mid T, mid density – radiation is beginning

to be trapped whereas the 𝑻𝟓/𝟐 scaling of

conduction has reduced it’s importance

3. Low T, high density – confinement time

dominates, but if ignition takes place high

gain is achieved

Fig 6 shows the effect of switching to an

optically thin model, illustrating the second

regime of behaviour, and the effect of a

perfect tamp where the radius is considered

fixed, illustrating the third regime. With this

fictional perfect tamp, ignition could in fact

take place from an initial condition substantially

below 1 keV.

Finally, if we examine a given gain contour it

can be seen that the point where pressure is

minimised is not the same as that where total

internal energy is minimised.

Fig 7 shows contours of optimum gain

for many fuel masses. It shows that

maximum gain increases as fuel mass

increases, and that the required

temperature is the same but the

required density is less.

The plot also allows holistic

assessment of both matters of target

dynamics and reactor engineering.

Three target constraints:

1. convergence ratio less than 30,

2. final size larger than 10 μm,

3. target gain of more than 10,

and three reactor constraints:

1. driver less than 100 MJ,

2. energy released less than 10 GJ,

3. repetition rate no faster than 1 Hz

for 100 MW output,

have been overlaid. The region

where no constraint applies is the

“island of viability”. For volume

ignition it is clear that extremely high

density is required. Additionally, if

coupling efficiency is less than 2%,

there is no island of viability at all.

Validation

Fig. 2: Replication of yield curves from Fraley et

al, Phys Fluids, 1974, fig 7.

Fig. 3: Replication of the

optimum gain curves given

by Atzeni, Jpn. J. App. Phys,

1995

Fig. 4: Replication of the

limiting gain curve, showing

the maximum of the

optimum gain over all fuel

masses, given by Atzeni, The

Physics of Inertial Fusion,

2004

A simple ODE model has been developed for

volume ignition and verified against detailed

simulation work of previous authors. The results

allow rapid exploration of the design space for

power production. Volume ignition is shown to

require very high density, but additionally to also

require coupling efficiency of greater than 2%

for any practical power production system to

exist.

Next steps will examine similar models for hot

spot and equilibrium ignition and compare.


