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Motivation

 First Light Fusion (FLF) is investigating .
projectile-driven inertial confinement fusion.
* Projectiles are driven to velocities of 10-20

km/s by electromagnetic launch on our .
pulsed power machine M3.

« Hyper-velocity projectiles drive strong shocks
across material interfaces in our targets.

* Therefore, the Richtmyer-Meshkov instability
(RMI) may be an important factor in
determining target performance.

RMI simulation configuration

The simulations presented here were performed with
the 2D Hytrac code.

Planar geomeitry w/ AMR and front-tracking is used.
RMI benchmarking is important for: Ideal gas EoS was used in all cases.
1) validation of hydrodynamic models Simulations were initalised using three regions:

2) assessing RMI impact on target designs «  Two materials in pressure equilibrium separated
by a perturbed interface

A shocked region defined by the analytical
solution to a 1D Riemann problem resulting in
the required intferface contact velocity u,

Resolution (via AMR level), higher order numerical
schemes and front-tfracking methods were varied.

The average perturbation amplitude was obtained
by post-processing the bubble and spike features.

Moving-window simulations, i.e., in the reference
frame of the contact, were attempted but were
found to yield unstable interfaces at low velocities
(~100 m/s), as previously noted in [12].

The simulation parameters are presented in Table 2.

Modelling is performed using two in-house
codes: Hytrac (2D AMR w/ front-tracking) and
B (3D multimaterial resistive-MHD)

Tri-Lab test suite
(Air-SF,)

Parameter Dimonte-Remington

(Be-AGAR)

Slow Fast

1.276
1.093
1.3 [kg/m3]
5.5 [kg/m3]
0.616

1.80
1.45
1700 [kg/m3]
120 [kg/m3]
-0.868
909 [bar] 0.1 [MBar]
0.441 0.991 0.998
1.3 9.1 18.2
5.93 [cm] 100 um
3.00 [mm]
97.0 [m/s]

« Our aimis to develop an RMI modelling
capability valid over a range of target setups
and suitable for reproducible Cl testing.
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Fig. 1: (above) Experimental data (PLIF images) from the shocktube experiments of Jacobs & Krivets [3] illustrating
the evolution of a single-mode Richtmyer-Meshkov instability; the images above show an Air-SFé interface for
positive Atwood no. at M, = 1.3 and A = 5.9cm. The instability typically evolves in four phases: (1) linear growth, (2)
bubble/spike formation, (3) K-H instability seeding, and (4) fine-scale instability formation.

Table. 2: The parameters used to setup the Tri-Lab test
suite and Dimonte-Remington simulations.
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Fig. 4: A comparison of the non-linear models
against the D-R NOVA data, as initialised w/ the
Richtmyer (solid) and the Meyer-Blewett (dashed)
models. The Meyer-Blewett-initialised models
provide a better match to the data.

Fig. 3 compares models under experimental
Dimonte- Remington [4] NOVA conditions.

No significant difference was observed using Be
ldeal gas EoS and FEOS.

Fig. 4 shows the importance of the linear growth
rate used to initialise the non-linear model.

Model Validity / Notes
Richtmyer (R) [1] Impulsive For reflected shocks (RS) - use post-shock values: Vg (t) = kuchE{A‘ﬁ
Meyer-Blewett (MB) [6] Impulsive Valid for RS and reflected rarefactions: Vg (t) = 2ku. (hd + hg ) A™.
Dimonte-Ramaprabhu (DR) [11] Non-linear Non-linear model reproduces asymptotic growth rate at early and late times.

Table 1: A summary of different RMI models considered in this benchmarking work and their notable features.

The Dimonte-Ramaprabhu growth rate is:

Vs = V4
b/ 01+Cb/ST—|— [Q_Fb/s] Fb/st

Integrating yields the D-R model amplitude change:
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good at higher AMR levels using higher order
numerical schemes. Both the Dimonte-
Ramaprabhu model and experiemetal data
are well matched.

The effect of the front-fracking scheme on
interface evolution is of continued interest.

Conclusions and future work

We have performed Richtmyer-Meshkov instability simulations to validate Hytrac.

The TLTS and D-R tests have been incorporated into the Hytrac ClI suite.

A good match to existing literature for both positive (Air-SF,) and negative (Be-AGAR) tests is found.
This establishes frust in our modelling tools to evaluate novel, target-relevant parameters.

Future steps: 1) validate the B code, 2) multi-mode RMI tests, 3) perform integrated target simulations,
and 4) consider in-house experiments to provide new code validation data.
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