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Fig. 1: Schematic of fusion method.
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• A projectile driven by a large light gas gun impacts a

shock amplifier at 6.5 km/s.

• The amplifier is designed to increase the velocity and

pressure of the shock travelling through it.

• A 32 km/s, ~1 TPa, shock exits the amplifier and impacts

the target where fusion conditions occur.

• The planarity and pressure of the shock exiting the

amplifier is essential knowledge for:

- validation of amplifier simulations

- optimisation of fusion targets

Fig. 2: (Right) The large light gas gun facility at First Light Fusion Ltd.

First Light Fusion Ltd. is a privately funded company researching ICF target designs that

are driven by strong shocks from high velocity projectile impacts.

Measuring Shock Pressure
• Shock pressure can be calculated from a measured shock

velocity, temperature or density, given the EOS.

• To date, measurements of velocity and temperature have

been attempted for this system, see R. L. Barker’s poster

[TP11.00076].

• Most successful method to date has been to measure

velocity using backlit shadowgraphy.

• This method is easy to field but has drawbacks:

- Non uniformities along line of sight are not captured.

- Inherent noise in differentiating position–time data.

Fig. 4: (Right) Backlit 
shadowgraphy data 
captured using fast framing 
camera.
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Fig. 3: Backlit 
shadowgraphy
schematic. Probe
beam is refracted by 
density gradient of shock.

- Difficult to 

measure close 

to amplifier exit 

due to self-

aperturing.
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VISAR Theory

• Velocity Interferometry System (for) Any Reflector (VISAR) is a widely used technique in

EOS experiments to measure shock velocity.

• A fast moving object imparts a doppler shift on a reflected probe beam. An

interferometer is used to measure the rate of change in optical phase which can be

used to calculate velocity.

• In a typical EOS experiment, a sample is backed by a well studied ‘witness’ material.

When a shock passes from the sample into the witness material, it becomes reflective

and the shock speed is measured. From this, the release state of the sample is inferred.

Fig. 5: Typical experimental configuration for 
EOS measurement using VISAR.
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Fig. 6: Schematic of target configuration.
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• The large light gas gun facility was used to impact a diagnostic development amplifier

(simplified manufacture, 300-400 GPa planar shock output).

• The amplifier exit was covered by a 50 μm foil to provide a reflective surface to

measure the t0 fringe position.

• The rear of the amplifier was coupled to a cell filled with deionised water which has 40-

50% reflectivity above 250 GPa [1].

• A 10 W, 532 nm, CW probe laser was focussed to produce a spot on the amplifier exit.

• This configuration has several advantages over backlit shadowgraphy:

- End on measurement so non-uniformities in the velocity profile can be resolved.

- Direct measurement of velocity so signal doesn’t need to be differentiated.

- Witness material is fluid which can couple directly to the amplifier output, so pressure

can be measured closer to the amplifier exit.

Experimental Results

• The spot size on the amplifier exit had

to be reduced down to just 1 mm in

order to compete with self emission

from the shocked water.

• The target configuration was

simulated using our in house multi-

material parallel resistive MHD code

‘B2’.

• The measured velocity starts within

error but then falls faster than

predicted by simulation.

• There are several proposed causes for

this disagreement:

- 3D effects not captured in the

axisymmetric simulation (seeded by

non-planar impact with the

projectile).

- Unsimulated target features such as

the glue layer between the

amplifier and foil.
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Fig. 7: Streak image of VISAR fringes (top) and plots 
of measured and simulated shock velocity (bottom).
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- EOS uncertainty – the water EOS used in this simulation is known to disagree with

data in literature (see future work).

Summary and Future Work

• Shock velocity from an FLF amplifier was measured using VISAR.

• Initial velocity matched within error but decayed more rapidly than predicted by

simulation.

• Repeats planned with small tweaks to the target and optical design.

- Ultra narrow band pass filter and cylindrical lens to increase the signal to noise ratio

from self emission enabling a spatially resolved measurement across the whole

amplifier exit.

- Utilise physical vapour deposition process to flash the end of the amplifier, removing

the unsimulated glue layer.

- Improve the water EOS using experimental data from literature.

• Once a higher power laser has been procured and commissioned, repeat this

experiment for our fusion amplifiers.


