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First Light Fusion Target Configuration
First Light Fusion Ltd. is a privately funded company researching ICF target designs that — orobe
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are driven by strong shocks from high velocity projectile impacts.
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Fig. 1: Schematic of fusion method.
g | ! Fig. 6: Schematic of target configuration.

A projectile driven by a large light gas gun impacts a
shock amplifier at 6.5 km/s.

The large light gas gun facility was used to impact a diagnostic development amplifier

(simplified manufacture, 300-400 GPa planar shock output).

 The amplifier is designed to increase the velocity and
pressure of the shock travelling through it.

The amplifier exit was covered by a 50 um foil to provide a reflective surface to

measure the t, fringe posifion.

« A 32 km/s, ~1 TPq, shock exits the amplifier and impacts
the target where fusion conditions occur.

The rear of the amplifier was coupled to a cell filled with deionised water which has 40-

50% reflectivity above 250 GPa [1].

 The planarity and pressure of the shock exiting the
amplifier is essential knowledge for:

A 10 W, 532 nm, CW probe laser was focussed to produce a spot on the amplifier exit.

This configuration has several advantages over backlit shadowgraphy:

- validation of amplifier simulations , o , ,
- End on measurement so non-uniformities in the velocity profile can be resolved.

- optimisation of fusion targets . , . . .
- Direct measurement of velocity so signal doesn’t need to be differentiated.

Fig. 2: (Right) The large light gas gun facility aft First Light Fusion Ltd.

- Withess material is fluid which can couple directly to the amplifier output, so pressure
can be measured closer to the amplifier exit.

Measuring Shock Pressure
532nm input beam

« Shock pressure can be calculated from a measured shock EXperimenfd| Results
velocity, temperature or density, given the EOS. e

The spot size on the amplifier exit had
to be reduced down to just T mm in
order to compete with self emission 1500 4
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« To date, measurements of velocity and temperature have
been attempted for this system, see R. L. Barker's poster
[TP11.00076].
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- Unsimulated target features such as
the glue layer between the

VISAR Theory amplifier and foil.

- EOS uncertainty — the water EOS used in this simulatfion is known to disagree with
data in literature (see future work).

Fig. 7. Streak image of VISAR fringes (top) and plots
of measured and simulated shock velocity (bottom).

« Velocity Interferomeftry System (for) Any Reflector (VISAR) is a widely used technique in
EOS experiments to measure shock velocity.

« A fast moving object imparts a doppler shift on a reflected probe beam. An
iIntferferometer is used to measure the rate of change in optical phase which can be
used to calculate velocity.

Summary and Future Work

- In a typical EOS experiment, a sample is backed by a well studied ‘witness’ material. * Shock velocity from an FLF amplifier was measured using VISAR.

When a shock passes from the sample into the withness material, it becomes reflective « |nifial velocity matched within error but decayed more rapidly than predicted by
and the shock speed is measured. From this, the release state of the sample is inferred. simulation.
_ e « Repeats planned with small tweaks to the target and optical design.
witness | interferometer |
drive laser i \ \ i - Ultra narrow band pass filter and cylindrical lens to increase the signal 1o noise ratio
| | streak from self emission enabling a spatially resolved measurement across the whole
i \ \ () i amplifier exit.
Fig. 5: Typical experimental configuratfion for | | - . - N .
EOS measurement using VISAR. e e L L Lt - Utilise physical vapour deposition process to flash the end of the amplifier, removing
the unsimulated glue layer.
- Improve the water EOS using experimental data from literature.
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