

An Overview of Progress at First Light Fusion

Nicholas Hawker
The First Light Fusion Team

Overview

- "Projectile fusion"
 - High-velocity projectile replaces the laser
 - Target designs are key, but trade secrets
 - The targets multiply the velocity and create convergence
- 2015 2019: Phase Two Demonstration of fusion
 - Machine Three commissioned
 - Experiments in progress
- 2019 2024: Next phase, five year plan
 - Requires new funding
 - Gain experiment and reactor design

Machine Three in numbers

- 125 UF
- 12 nH, 1.5 mOhms
- ± 100 kV rated, ± 70 kV commissioned
- 70 kV \rightarrow 14 MA in ~2 μ s
- Current into load depends on load impedance

Flyer plate load schematic

VISAR

- Shot 99
- 10x10x1 mm
 Al flyer plate
- VISARvelocity ~4km/s
- Estimated
 velocity at
 impact ~14
 km/s

Streaked shadowgraphy

- Shot 99
- 10x10x1 mm
 Al flyer plate
- Shockvelocity ~12km/s
- Pressure~100 GPa

Present launch performance and issues

- Representative performance numbers
 - Projectile velocities ~15 km/s
 - Sustained impact pressures ~100 GPa
 - Higher pressures measured but impulsive, "blast wave" profile
- We believe we have a "power loss" issue
 - ~50% more current than expected (~9 MA vs. ~6 MA predicted)
 - Suggests a short
 - Velocity matches prediction, no interruption to acceleration

A simple ODE model for volume ignition

energy balance
$$\frac{dT}{dt} = \frac{f_{\alpha}W_{\alpha} - W_{C} - W_{R}}{(3/2)\Gamma\rho}$$

depletion
$$rac{d
ho_{DT}}{dt} = -rac{
ho_{DT}^2 \langle \sigma v
angle}{2m_{DT}}$$

$$\frac{\text{loss of confinement}}{dt} = -\sqrt{c_{ideal}^2 + c_{fermi}^2}$$

$$W_{\alpha} = 5A_{\alpha}\rho^{2}\langle\sigma v\rangle$$
 $W_{R} = \sigma T^{4}(1 - e^{-r_{dirac}/l_{p}})$
 $W_{C} = \kappa \nabla T \frac{S}{V}$

$$e = \sqrt{e_{ideal}^2 + e_{fermi}^2}$$

Developed to apply to arbitrary geometry

Monte-Carlo precalculation

$$\frac{dT}{dt} = \frac{f_{\alpha}W_{\alpha} - W_{C} - W_{R}}{(3/2)\Gamma\rho}$$

$$\frac{d\rho_{DT}}{dt} = -\frac{\rho_{DT}^2 \langle \sigma v \rangle}{2m_{DT}}$$

take the shortest length

$$\frac{dr}{dt} = -\sqrt{c_{ideal}^2 + c_{fermi}^2}$$

$$W_{lpha}=5A_{lpha}
ho^2\langle\sigma v
angle \qquad {
m required\ if\ radiation\ trapping\ important}$$
 $W_{R}=\sigma T^4ig(1-e^{-r}dirac/lpig)$ $W_{C}=\kappa
abla T rac{S}{V} \qquad {
m take\ the\ shortest\ length}$

take the

shortest length

$$e = \sqrt{e_{ideal}^2 + e_{fermi}^2}$$

first light fusion ltd

Validation

- Sphere
- Replication of Atzeni
 "The Physics of Inertial Fusion" figure
 5.11
- Good match to integrated simulations
- Apart from gain 1 contour

When plotted in terms of density, there is little difference between geometries

Tritium breeding and energy multiplication

- Curtain thickness needs to be > 70 cm for TBR > 1.2
- Design can use pure, natural lithium
 - No ⁶Li enrichment, no Be, no Pb

Possible plant layout

Hot cell is a physical small part of whole Driver is large, in size and cost

Summary

- 2019 milestone
 - Machine Three commissioned and working well
 - Work on-going on projectile launch
 - Aiming to show fusion by end of the year
- Next steps
 - Preparation for new funding round going very well
 - Art of the possible for Machine Four being explored
 - Case for gain being built
 - Reactor vision does not seem to have an showstoppers

Other stuff from First Light @ IFSA

- "Experimental investigation of flyer plate launch on Machine 3 at First Light Fusion Ltd.", poster, Tues 3 PM, Matthew Betney
- "Towards a predictive modelling capability for Projectile-Driven ICF", talk, Thurs 2 PM, Dave Chapman
- "Simulations of the Richtmyer-Meshkov instability at First Light Fusion", poster, Thurs 3 PM, Martin Read
- "Demonstration of numerical capability at First Light Fusion", poster, Thurs 3 PM, James Pecover