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Motivation
• First Light Fusion (FLF) is researching ICF with novel 

target designs utilising strong shocks driven by 

hyper-velocity projectiles and EM launch systems.

• Proprietary target designs are being developed 

and understood using our in-house front tracking 

hydrodynamics code Hytrac.

• Experiments designed to deliver proof-of-concept 

and numerical benchmarking data focus on the 

well-known asymmetric cavity collapse case (Fig. 1 

upper panel), which is challenging to model and 

produces plasmas with conditions relevant to the 

warm dense matter (WDM) regime (Fig. 1 lower 

panel).

• Hytrac is being developed from the ground up to 

deliver a robust multi-physics capability, of which 

equation of state (EoS), transport, microphysics and 

radiative effects form core components.

Electron-ion relaxation model
• Shock-heated materials involve the production of two-temperature states.

• Affects energetics and feeds back into heat transport and hydro evolution. 

• Ions hotter than electrons, such that mode coupling [6] can be neglected. 

• Use modified (reduced) Fermi golden rule model [7]:

• Strong electron coupling 

[8]and finite-wavelength 

screening [9] are included in 

the dielectric function:
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• Electron conductivities are required for many materials over a large 𝜌-𝑇𝑒-𝑇𝑖 space.

• A flexible and numerically inexpensive approach is the Lee-More model [2,3].

• Significant modifications can be made to improve accuracy around solid phase [4].

• Electrical resistivity (for use in MHD) and ion thermal conductivity use a similar formalism; 

these are not presently important for our benchmarking and validation experiments.

Electron thermal conductivity model

Ionisation model
• All transport and microphysics models for plasmas rely on input from an ionisation model.

• Simple approaches such as the Thomas-Fermi model fail to capture atomic structure.

• Important around solid densities for temperatures similar to shell ionisation energies.

• We use the SpK model, which uses Busquet’s approach [1] with a degeneracy-corrected 

Saha-Boltzmann solver to deliver LTE and nLTE population kinetics.

• The excitation energies of all configurations is supplemented with NIST data.

Fig. 2: Surface plots on the density-

temperature plane of the mean 

ionisation state predicted by the 

SpK model for deuterium (left) and 

aluminium (right). The ionisation for 

STP conditions is determined by 

data; e.g. measured Fermi energy.

Benchmarking conductivities against DFT-MD

• Comparisons to DFT-MD 

simulations [10,11] show 

reasonable agreement for 

conducting states.

• Insulator-conductor 

transition in hydrogen is 

clearly still problematic.

• Demonstrates need for 

better neutral scattering 

models.

• Simple metals show very 

good agreement under 

WDM conditions.

• An improved treatment for 

both WDM and neutral 

scattering contributions are 

currently being developed.

Fig. 7: Comparison of modified 

Lee-More approach with DFT-MD 

data for hydrogen (top panels), 

CH (bottom left) and aluminium 

(bottom right). 

Fig. 1: Hytrac simulation of asymmetric cavity collapse induced by an aluminium projectile moving at 30 km/s 

(top). Thermal conduction has a significant effect on the evolution of the deuterium in the cavity (bottom).

Fig. 6: Electron-ion relaxation rates at constant temperature ratio for 

solid density (left) and 4x compressed (right) metallic elements. All 

curves are driven by the SpK ionisation model.
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• For WDM conditions we 

modify the standard 

Lee-More ansatz [2]:

• For metallic elements we 

also include a phonon 

scattering term [4]:
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Fig. 3: Plasma model components of 

the thermal conductivity of solid 

aluminium (above). The ideal 

temperature scaling of each part are 

shown by colour-coded dashed lines.

Fig. 4: Behaviour of the electron-

electron correction to the (Lorentz) 

plasma part of the present model.
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• The dimensionless 

collision frequency is:
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• Ansatz form of the e-e 

correction [5]:

• Use Rutherford cross 

section with fitted lnL

for e-i and Desjarlais fit 

[3] for e-n scattering.
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Comparison of Hytrac and Helios-CR models

Fig. 8: Contour plots of the electron thermal conductivity (left) and 

electron-ion equilibration rate with 𝑇𝑒 = 0.5 𝑇𝑖 (right) for deuterium. The 

present models as used in Hytrac (solid) are compared to those used in 

the Helios-CR code (dashed). 

• Benchmarking of Hytrac

against the Helios-CR code 

[12] in simple geometries is 

currently being undertaken.

• The models in Helios-CR 

rapidly break down under 

conditions relevant to cavity 

collapse experiments.

• Differences in equilibration 

rates massive; this may feed 

back into the thermal 

conductivity model.

• Differences are even larger 

for metals, especially in the 

weakly-ionised regime.

Current and future work
• Extensive sensitivity study of our targets to equation of state and microphysics models.

• Full coupling of the SpK ionisation model output to the thermal conductivity and energy 

exchange rate models; crucial for multi-component materials, such as plastics.

• More robust treatments for low-temperature effects

• Electron-neutral and electron-phonon scattering contributions.

• Improved plasma/WDM phase conductivity with Ichimaru-Tanaka-style model [13,14]:

• Multi-component QHNC model for inter-species correlations 

• Higher-order orthogonal polynomials for better accuracy in ideal plasma regime
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Fig. 5: Electron conductivities for Al, Be, Cu & Fe at solid density (left) and 

4x compressed (right). The present (solid), Brysk-Spitzer-Hubbard (dashed) 

and NRL formulary (dot-dashed) models are compared.

Enhanced 

electron-phonon 

scattering rate
Hytrac model is forced 

to reproduce exp. Data 

under STP conditions
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• Currently developing CMHNC 

approach for alternative SLFC.


