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Motivation

First Light Fusion (FLF) is researching ICF with
novel target designs utilising strong shocks
driven by hyper-velocity projectiles using EM
launcher systems
Designing and optimising proprietary target
designs requires in-house modelling capability
Hytrac is an Eulerian AMR radiation-
hydrodynamics code based on the front
tracking approach:
« High-fidelity shock and interface tracking
Multi-temperature description
Thermal conduction via explicit STS method
Emerging radiation transport capability
Multi-material node propagation

Comparison of Hyirac and Helios-CR

* First magjor code-to-code benchmarking exercise recently completed against Helios-CR [14]

« Consider simple axisymmetric geometry (Helios-CR could not sufficiently resolve enough cells in gas
for spherical target configuration) — Pre-shocked Al ring collapsing onto D fuel

Comparisons of mass-weighted average (MWA) fuel conditions show good agreement
Convergence tested through normalised RMSD fime-averaged over stagnation phase

Generally the codes agree to within ~10%, but Hytrac is currently a little less well-converged
(ongoing performance improvements will soon allow for like-for-like comparisons)
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Fig. 9: Cell trajectory plofts
in the fuel on the density-

temperature plane.

Development and benchmarking of equation of state model

« FEQS [1] forms the core of our EOS model, but numerous fixes and changes have been necessary
« Comparison to experimental data and ab initio simulations shows generally good agreement
Investigating use of SpK model [2,3] as core for electron EoS to provide nLTE population kinetics

Fig. 7: Convergence of MWA ion temperature (left)
and mass density (right) in deuterium fuel from Helios-
CR (top row) and Hytrac (bottom row).

Fig. 8: RMSD convergence
metrics for both codes as a
function of minimum cell size
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