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Outline of talk

• Experiments of Derentowicz et al.

• Transport model sensitivity

• SpK and TRansport and MicroPhysics (TRaMP) models

• Ongoing work - towards a predictive capability

• Summary and conclusions
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Derentowicz et al. (1977) experiment aligns to FLF's core 
vision for reactor technology - uniaxially-driven system
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• Drive pressure of 46 Mbar in copper gives

13 Mbar in plastic coverslip - believed to be 

reproduceable using FLF’s existing facilities

• Diagnostics fielded:

• Shock velocity – Cu-NI-Cu bimetallic gauge

• Mach wave radius – optical framing camera

• Fusion neutrons – multiple shielded scintillators 
arranged in an arc around the explosive assembly

• Null shots – repeats of fusion shots w/o D2 gas fill

• Fusion neutron output - claimed to be ~104

with highest yield of 3.5x107

• Considered a high-value piece of 

experimental validation for our in-house 

modelling codes and as a means of 

interacting with external collaborators
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Integrated simulations have closely reproduced original 
experimental data but do not substantiate reported yields
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• Modelled predictions agree well with experimental data

• Drive planarity is very high over initial implosion phase, 

enabling target operation phase to be decoupled

Copper liner 

Explosives

Gold anvil

Deuterium 
fuel

Vacuum gap
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Idealised target model for sensitivity studies - basic setup
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Anvil - Au

Fuel - D2

Coverslip - PMMA

Driver - Cu:
r /r0 = 2.9, T = 13 eV, 

v = -18.3 km/s

Geometry = Axisymmetric
Base resolution = 40 cells
Number of AMR levels = 4
Minimum cell size = 1.7 um
Cavity radius = 1 mm
Cavity internal angle = 60°
Tip radius of curv. = 10 um
Fuel pressure = 1 bar

(a)
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Idealised simulations with standard multiphysics model produce 
neutron yields ~100x smaller than experimental claim! 

7

• PMMA coverslip and gold anvil are driven into 

states characterised by WDM-like conditions

PMMA coverslip

Gold anvil

Wide range of 
conditions across 
degeneracy/coupling 
parameter space

Mostly quasi-degenerate 
electrons and always very 
strong coupled ions
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Cumulative yield and burn-weighted 

average ion temperature histories

Final yield ~ 
100 neutrons
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Scaling factor studies show uncertainties in electron and ion 
conductivities and equilibration can give larger sensitivities
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The implementation and configuration of the conduction 
operator itself also contains many free parameters 

• Interpolation functions - all converge ‘in medium’

• Flux limiter coefficients (separate values for 

electrons/ions)

• Significant uncertainties exist for whether any of 

these models work at material interfaces
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Generally small sensitivities for different conduction options 
with larger effects due to unreasonable/unphysical choices
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• Largest yield comes from using 
harmonic mean for obtaining 
cell-face max heat flux -
unphysical fuel insulation 

• Such sensitivities suggest a 
non-local conduction 
model is needed

flux limiter interpolator flux limiter coefficient max heat flux interpolator
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Viscous effects are important in the initial shock dynamics 
and has some handle on the fuel energetics and yield
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• Ion viscosity model from Stanton-Murillo model (PRE 2016)
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Reactivity reduction due to Albright-Molvig model [Hoffman 
et al. 2015] only reduces neutron yield further (up to ~10x)
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• Correlations between strong gradients 

in plasma with reduced neutron yield 

Prior to shock into cone tip After shock reflects from cone tip
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We are building an improved Transport and Microphysics 
(TRaMP) model to reduce uncertainties - driven by SpK
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Ideal plasma model 
(Apfelbaum 2011)

Solids: 
Ziman + 
QEOS

Suitable 
WDM 
models

Strongly coupled

<Zi> = 0.55
<Zi

2>1/2 = 0.99
Gii = 5.45
Gee = 1.91
De = 6.81

Weakly coupled

<Zi> = 2.12
<Zi

2>1/2 = 2.71
Gii = 0.75
Gee = 0.09
De = 0.02

• SpK produces ionisation equilibrium -> TRaMP uses different models over r-T space

• Electron transport in WDM driven by Ichimaru-Tanaka model with HNC ion structure 

factors and various interaction potentials and local field correction models

Ideal - WDM 
blending region

PMMA PMMA

i-i SSF

e-e LFC e-e LFC

i-i SSF

O

C

H H (underneath)

O

C

<Zi> = 1
Gii = 1
Gee = 1
De = 1
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TRaMP model results - much improved over current tables 
(Lee-More and Helios-style) with only one free parameter
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Compressed hydrogen - r = 10 g/cc Solid aluminium - r = 2.7 g/cc
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Ongoing work

Possible Multi-physics improvements required for a predictive capability:

• From this work...

• Non-local heat transport - local flux-limited diffusion appears to be inadequate

• Improvements to physics and robustness of TRaMP model

• Make EoS model consistent with SpK-TRaMP - See A. Fraser’s talk (Tuesday GO07.00010)

• Next on the list...

• Multi-group radiation transport - radiatively-driven wall ablation/high-Z admixtures

• Mass diffusion/enthalpy transport model - important for jet breakup in cavity collapse

• Improvements to existing AMR and HPC scalability - non-ideal, fully-integrated sims

• MHD/xMHD - self-generated fields and magnetised transport physics
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Summary and conclusions

• Detailed sensitivity study of Derentowicz ‘fusion cone’ experiments has been undertaken

• Experiments report neutron yields mostly around104

• So far simulations cannot substantiate these claims - yields around 100x smaller!

• Thermal conduction can make a large difference

• Principally through uncertainty in electron thermal conductivity

• Evidence for non-local effects - presently not implemented in Hytrac

• Real plasma viscosity affects internal shock dynamics and final fuel energetics

• Reactivity reduction in high Knudsen number flows tend to reduce yields by around 10x

• We have developed a new TRansport and MicroPhysics (TRaMP) model to reduce the 

uncertainties that lead to the largest sensitivities on yield (ongoing work)

• Several new components of the multiphysics model are being developed to further 

Hytrac’s capabilities (ongoing work)

• We welcome collaboration in understanding this and other ICF-related problems

16



first light fusion ltd

THANK YOU FOR YOUR ATTENTION, 

AND PLEASE GET IN TOUCH!
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