

Investigating the role of transport in uniaxially-driven conical fusion targets

Dr Dave Chapman

Numerical Physics Team

First Light Fusion Ltd

davechapman@firstlightfusion.com

Acknowledgements

FLF Numerical Physics and HPC teams:

• N. Chaturvedi, T. Edwards, J. Gardiner, M. Fitzgerald, A Fraser, N. Hawker, J. Herring, R. King, N. Niasse, J. Pecover, M. Read, D. Vassilev, A. Venskus and N. Joiner

Imperial College London Plasma Physics Group:

A. Crilly, G. Kagan, J. Chittenden

University of San Jose:

• L. Stanton

Outline of talk

- Experiments of Derentowicz et al.
- Transport model sensitivity
- SpK and TRansport and MicroPhysics (TRaMP) models
- Ongoing work towards a predictive capability
- Summary and conclusions

Derentowicz et al. (1977) experiment aligns to FLF's core vision for reactor technology - uniaxially-driven system

- Drive pressure of 46 Mbar in copper gives
 13 Mbar in plastic coverslip believed to be reproduceable using FLF's existing facilities
- Diagnostics fielded:
 - Shock velocity Cu-NI-Cu bimetallic gauge
 - Mach wave radius optical framing camera
 - Fusion neutrons multiple shielded scintillators arranged in an arc around the explosive assembly
 - Null shots repeats of fusion shots w/o D₂ gas fill
- Fusion neutron output claimed to be ~10⁴
 with highest yield of 3.5x10⁷
- Considered a high-value piece of experimental validation for our in-house modelling codes and as a means of interacting with external collaborators

Integrated simulations have closely reproduced original experimental data but **do not** substantiate reported yields

- Modelled predictions agree well with experimental data
- Drive planarity is very high over initial implosion phase, enabling target operation phase to be decoupled

Idealised target model for sensitivity studies - basic setup

Idealised simulations with standard multiphysics model produce neutron yields ~100x smaller than experimental claim!

 PMMA coverslip and gold anvil are driven into states characterised by WDM-like conditions

Scaling factor studies show uncertainties in electron and ion conductivities and equilibration can give larger sensitivities

The implementation and configuration of the conduction operator itself also contains many free parameters

$$Q_{+1/2} = (-\kappa^{\text{eff}} \nabla T)_{+1/2}$$
$$= -\kappa^{\text{eff}}|_{+1/2} (T_{+1} - T_0) / \delta$$

- Interpolation functions all converge 'in medium'
- Flux limiter coefficients (separate values for electrons/ions)
- Significant uncertainties exist for whether any of these models work at material interfaces

Generally small sensitivities for different conduction options with larger effects due to unreasonable/unphysical choices

10

Viscous effects are important in the initial shock dynamics and has some handle on the fuel energetics and yield

Ion viscosity model from Stanton-Murillo model (PRE 2016)

Reactivity reduction due to Albright-Molvig model [Hoffman et al. 2015] only reduces neutron yield further (up to ~10x)

$$f_i^{\text{Pad\'e}}(\epsilon; N_{\text{K}}) = \frac{2\pi^{-1/2}}{\left(1 + N_{\text{K}}\epsilon^{3/2}\right)^{1/2}} \exp\left[-\epsilon \left(\frac{1 + \frac{4}{5}N_{\text{K}}\epsilon^{3/2}\left(1 + \frac{2}{5}N_{\text{K}}\epsilon^{3/2}\right)}{1 + \frac{4}{5}N_{\text{K}}\epsilon^{3/2}}\right)\right]$$

$$\langle \sigma v \rangle_{12} = \frac{16\sqrt{2}\pi^2}{(m_1 m_2)^2} \int_0^\infty dE_1 \sqrt{E_1} f_1(E_1) \int_0^\infty dE_2 \sqrt{E_2} f_2(E_2) \times \int_{-1}^{+1} d\zeta \, \sigma_{12}(E_{\text{CM}}) \sqrt{m_2 E_1 + m_1 E_2 + 2\zeta \sqrt{m_1 m_2 E_1 E_1}}$$

 Correlations between strong gradients in plasma with reduced neutron yield

Prior to shock into cone tip

After shock reflects from cone tip

We are building an improved Transport and Microphysics (TRaMP) model to reduce uncertainties - driven by SpK

- SpK produces ionisation equilibrium -> TRaMP uses different models over ρ -T space
- Electron transport in WDM driven by Ichimaru-Tanaka model with HNC ion structure factors and various interaction potentials and local field correction models

first light fusion Itd

TRaMP model results - much improved over current tables (Lee-More and Helios-style) with only one free parameter

Ongoing work

Possible Multi-physics improvements required for a predictive capability:

- From this work...
 - Non-local heat transport local flux-limited diffusion appears to be inadequate
 - Improvements to physics and robustness of TRaMP model
 - Make EoS model consistent with SpK-TRaMP See A. Fraser's talk (Tuesday GO07.00010)
- Next on the list...
 - Multi-group radiation transport radiatively-driven wall ablation/high-Z admixtures
 - Mass diffusion/enthalpy transport model important for jet breakup in cavity collapse
 - Improvements to existing AMR and HPC scalability non-ideal, fully-integrated sims
 - MHD/xMHD self-generated fields and magnetised transport physics

Summary and conclusions

- Detailed sensitivity study of Derentowicz 'fusion cone' experiments has been undertaken
- Experiments report neutron yields mostly around 10⁴
- So far simulations cannot substantiate these claims yields around 100x smaller!
- Thermal conduction can make a large difference
 - Principally through uncertainty in electron thermal conductivity
 - Evidence for non-local effects presently not implemented in Hytrac
- Real plasma viscosity affects internal shock dynamics and final fuel energetics
- Reactivity reduction in high Knudsen number flows tend to reduce yields by around 10x
- We have developed a new TRansport and MicroPhysics (TRaMP) model to reduce the uncertainties that lead to the largest sensitivities on yield (ongoing work)
- Several new components of the multiphysics model are being developed to further Hytrac's capabilities (ongoing work)
- We welcome collaboration in understanding this and other ICF-related problems

THANK YOU FOR YOUR ATTENTION, AND PLEASE GET IN TOUCH!