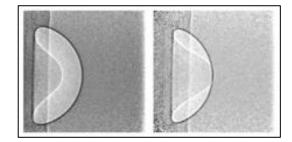


Inertial Fusion Energy at First Light Fusion

Tackling Some Inertial Fusion Energy Challenges at the European XFEL 11th-12th June 2024

Francisco Suzuki-Vidal


Lead Scientist, Collaborative Experiments

Contents

What is First Light Fusion (FLF)

Inertial Fusion research at FLF

Research prospects at EuXFEL

A brief introduction to First Light Fusion

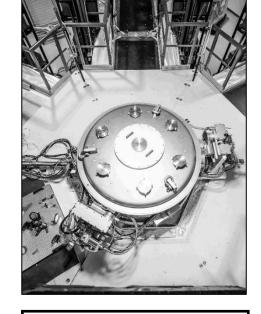
First Light Fusion

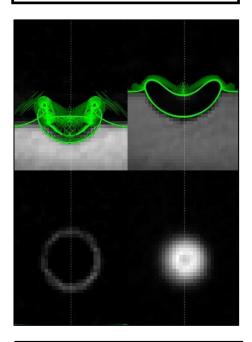
- Spin out from Oxford University in 2011
- Today we are ~100 employees
- We have received £77m (~€90m) in private equity funding
- Several large experimental platforms
- Large numerical and simulation capability

first light

First Light Fusion: Science departments

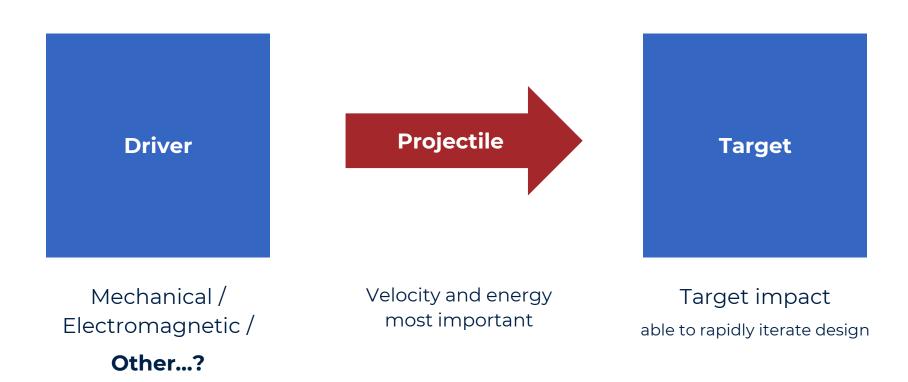
Experimental


Pulsed Power


Computational Science and Engineering

Target Design

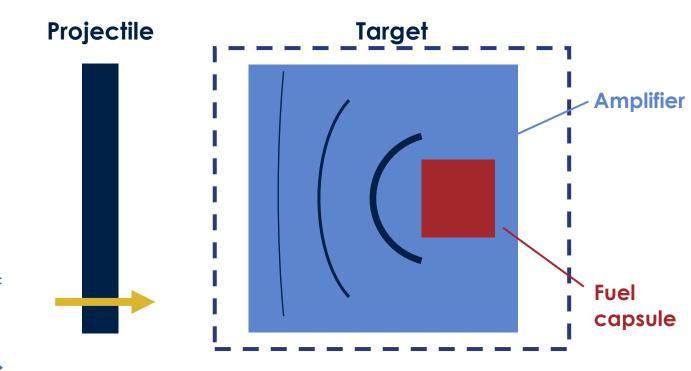
Power Plant


Diagnostics, experiment design/execution Electromagnetic launchers, system controls

In-house numerical codes, Data Science (Bayesian optimisation, UQ)

High-gain amplifier design and optimisation

Energy cycle, neutronics, CFD


We use a projectile driver, which is low cost and high energy, but low power; the target design compensates

large but simple machine

There is a key technology, the amplifier, which shapes and focuses the original shockwave

- Single-sided driver
- Planar input shock transformed to spherically-symmetric implosion (not shock ignition)
 - Input ~80 GPa (0.8 Mbar) outputs ~1.2 TPa (12 Mbar)
 - Input 6.5 km/s impact gives a release of ~70 km/s
- This amplifier technology is what makes projectile fusion viable

The planar output variant is called the **Endor amplifier**

(*) Submitted paper currently under review

FLF's in-house drivers: Gas-guns & pulsed-power

BFG: 'Big Friendly Gun'- Mechanical launch

- 27 kg piston at 1 km/s
 - Projectile ~7 km/s

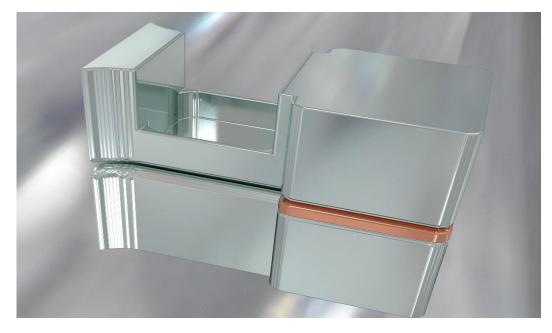
M3: 'Machine 3'- Electromagnetic launch

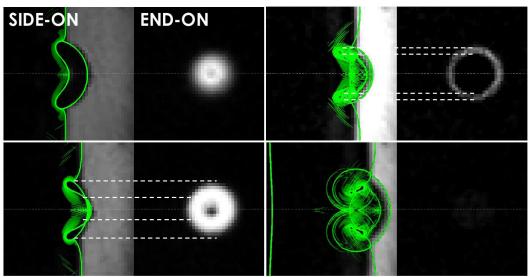
- 14 MA, 2 μs current pulse
 - Projectile ~20 km/s

Inertial Fusion Research at FLF


End to End Science

 Full in-house experimental and numerical capabilities


BFG gas-gun driver


M3 pulsed-power driver

3-D MHD simulation of a flyer plate projectile on M3

Synthetic diagnostic from a target simulation

FLF's IFE research is driven by collaborations

US National labs (Sandia)

Amplifiers on the STAR gas-gun

- UK universities (Imperial College, Oxford, York)
- European research facilities (ESRF)

Amplifiers on the Z-machine

- New pressure record in quartz (1.85 TPa)
- First amplifier paper under review
- Currently developing an EoS platform using our amplifiers

IFE research with UK universities and industry

• AMPLIFI: 5-year programme for business-led research in collaboration with UK academics

Research Council

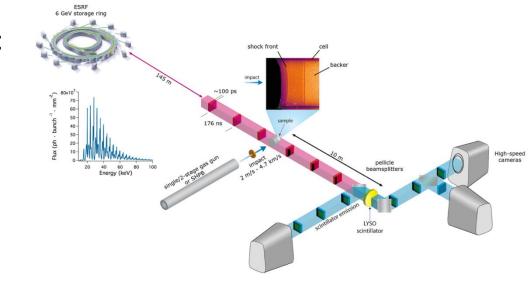
- Total of £12M (~€14M), £6M from UK EPSRC + £6M from FLF
- Funding for 11x PhD students, 14x Postdoctoral researchers, 40x Summer interns
- Explore fundamental physics of complex IFE targets (hydrodynamics, radiation, heat transport)

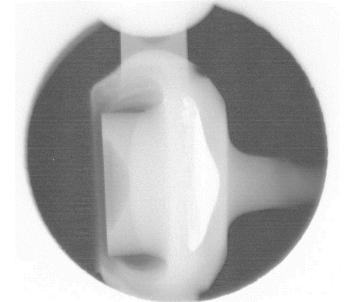
Imperial College London

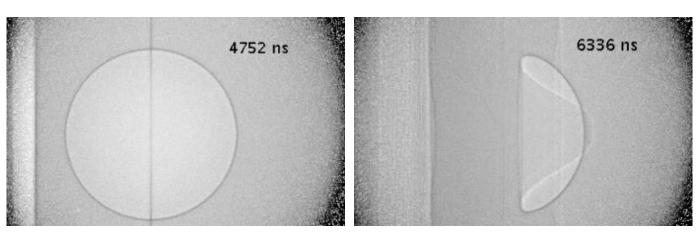
HED with pulsedpower, laser ICF, MHD, diagnostics

HED with lasers, XFELS, gas-guns, atomic physics

HED with lasers,
XFELs, molecular
dynamics, kinetic
simulations


111 Machine Discovery

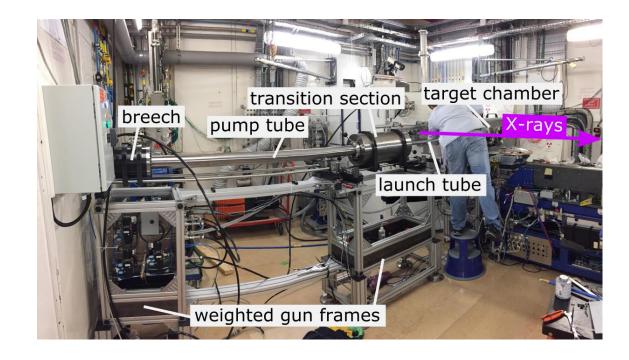

Code optimisation through machine learning


- Ranges of ρ , T, P from WDM regimes to burning plasma. Instabilities, mixing...
 - Research kicked off only recently!

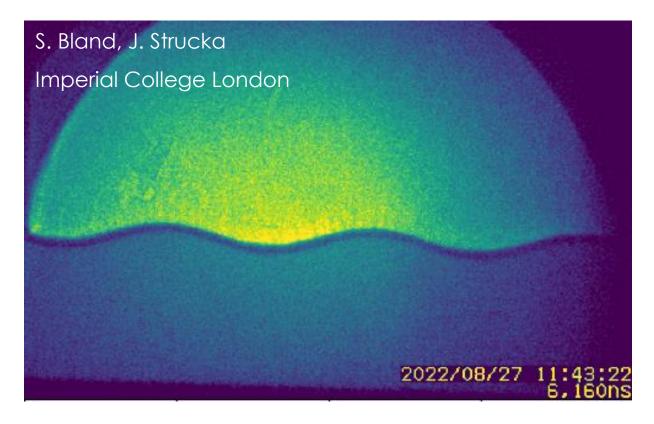
X-ray phase contrast imaging at ESRF

- Research led by Oxford Engineering (D. Eakins)
- First use of 5 km/s portable gas gun on ESRF
- Allows comparison to hydrodynamic simulations
 - → push to higher velocities and rep. rate

In-house hemispherical cavity jet formation image


ESRF spherical cavity imaging

E. Escauriza et al., 'Collapse dynamics of spherical cavities in a solid under shock loading', Sci. Reports (2020)


A new gas-gun platform for ESRF's ID19

- Relevance to FLF work requires accessing more extreme regimes
- New 2-stage gas-gun is needed, with impact velocities >6 km/s

- First amplifier validation experiments at ESRF granted July 2024
- Submitted Industrial Long-Term Proposal (public-private partnership)

Hydrodynamic instabilities are critical for IFE

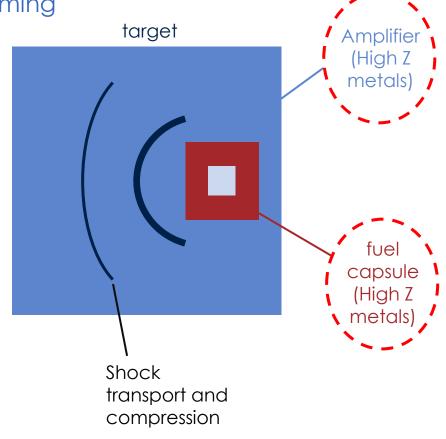
t=7.5 μ s \rightarrow individual cylindrical shock waves interact t=8.2 μ s \rightarrow a merged planar shock wave is formed t=13.3 μ s \rightarrow pressure due to shock reflection forms cavities t=22.8 μ s \rightarrow initial interface inverts due to RMI, shock wave detaches

- Richtmyer-Meshkov instability experiments at the ESRF
 Research led by Imperial College (S. Bland, J. Strucka)
- Coupled portable pulsed-power driver to synchrotron
 - Complements laser experiments but with larger volumes, longer timescales. Pulsed-power allows flexibility in driver geometries.
 - First LCLS proposal accepted:
 Electrothermal instability experiments
 - Proposal to EuXFEL submitted....

Research prospects at EuXFEL

Core physics applications for XFEL

1. Image > TPa (10s Mbar) pressure release, with any instabilities, into fuel


- · Needs high energy, high resolution, multi-frame, accurate timing
- Need a method of achieving these pressures on XFEL

Material properties of fuel capsule metal

Need 'boring' high fidelity information

3. Properties of compressed fuel, especially WDM regime

Needs novel techniques for temperature and density

IFE challenges for XFELs - Summary

- Collaboration is the way forward for IFE
 - Public-private partnerships (BMBF proposal)
- Driver: High-energy, high-repetition laser would be a unique tool for IFE research
 - Reach higher pressures relevant to amplifiers
 - But consider other combos: "simpler", portable alternatives e.g. pulsed power or gas guns
- Faster detectors
 - Aiming for 3 ns interframe on ESRF, but minimum scintillator decay is ~30 ns. Need development, novel solutions, facility time for testing
- Amplifiers: Higher energy photons with large field of view
 - >1 mm while keeping ~1 μm resolution
- Current and future capabilities at EuXFEL are aligned with key fundamental physics relevant to IFE / FLF: instabilities, mix, strength, EoS, shocks, microphysics...

Thank you for your attention Please get in touch

francisco.suzuki-vidal@firstlightfusion.com